
Package mathfont v. 2.4a User Guide
Conrad Kosowsky

June 2025
kosowsky.latex@gmail.com

For easy, off-the-shelf use, type the following in your preamble and
compile with X ELATEX or LuaLATEX:

\usepackage[〈font name〉]{mathfont}

As of version 2.0, using LuaLATEX is recommended.

Overview
The mathfont package adapts unicode text fonts for math mode. The package allows
the user to specify a default unicode font for different classes of math symbols, and
it provides tools to change the font locally for math alphabet characters. When
typesetting with LuaTEX, mathfont adds resizable delimiters, big operators, and a
MathConstants table to text fonts.

Handling fonts in TEX and LATEX is a notoriously difficult task because fonts are compli-
cated.1 The mathfont package addresses this situation by providing tools to load TrueType
and OpenType fonts for use in math mode, and this document explains how to operate math-
font. For version history and code implementation, see mathfont-code.pdf, and for a list of
all symbols accessible with mathfont, see mathfont-symbol-list.pdf. Those two pdf files,
this user guide, and four example files are included in the mathfont installation and are avail-
able on ctan. Because unicode text fonts, particularly without built-in math support, are
plentiful, I hope that this package expands the possibilities for typesetting math in LATEX.

1 Loading and Basic Functionality
Loading fonts for math typesetting is more complicated than for regular text. First, selecting
fonts for math mode, both in plain TEX and in the nfss, involves additional macros above

Acknowledgements: Thanks to Lyric Bingham for her work checking my unicode hex values. Thanks to
Matthew Braham, Sergio Callegari, Daniel Flipo, Shyam Sundar, Adrian Vollmer, Herbert Voss, and Andreas
Zidak for pointing out bugs in previous versions of mathfont. Thanks to Jean-François Burnol for pointing
out an error in the documentation in reference to his mathastext package.

1The last few decades have seen huge advances in loading fonts with TEX. Donald Knuth originally
designed TEX to load fonts created with Metafont, and only more recent engines such as Jonathan Kew’s
X ETEX and Hans Hagen, et al.’s LuaTEX have extended TEX’s font-loading capabilities to unicode. X ETEX
supports OpenType and TrueType fonts natively, and LuaTEX can load OpenType fonts through the luaot-
fload package. Information on X ETEX is available at https://tug.org/xetex/, and information on LuaTEX
is available at the official website for LuaTEX: http://www.luatex.org/. See also Ulrike Fischer, et al.,
“luaotfload—OpenType ‘loader’ for Plain TEX and LATEX,” https://ctan.org/pkg/luaotfload. For dis-
cussion of fonts generally, see Yannis Haralambous, Fonts & Encodings (Sebastopol: O’Reilly Media, Inc.,
2007).

1

https://tug.org/xetex/
http://www.luatex.org/
https://ctan.org/pkg/luaotfload

2 User Guide Loading and Basic Functionality

Table 1: Comparison of General Font-Loading Packages
Text font Math font

Traditional TEX font mathastext No general package
Unicode font (for math typesetting) mathfont or mathspec unicode-math
Unicode font (for text only) fontspec fontspec

and beyond what we need to load text fonts. Second, TEX expects fonts for math to contain
extra information for formatting equations.2 Broadly speaking, we say that a math font
contains this extra information, whereas a text font does not, and typesetting math with
glyphs from one or more text fonts usually results in messier equations than using a properly
prepared math font. The functionality of mathfont then is twofold: (1) provide a wrapper
around the nfss commands for math typesetting that serves as a high-level interface; and (2)
implement LuaTEX callbacks that artificially convert text fonts into math fonts at loading.3
Although mathfont tries its best to get your fonts right, it may run into trouble when picking
fonts to load. If this happens, you should declare your font family and shapes in the nfss
before setting any fonts with mathfont.

You must use one of X ELATEX or LuaLATEX to typeset a document with mathfont. You
can load mathfont with the standard \usepackage syntax, and the package accepts five op-
tional arguments. If you use LuaTEX, the options adjust or no-adjust will manually specify
whether mathfont should adapt text fonts for math mode, and mathfont selects adjust by
default. If you use X ETEX, mathfont cannot adjust any font objects with Lua callbacks, and
either of these package options will cause an error.4 For this reason, using LuaTEX with
mathfont is recommended as of version 2.0. The options default-loader and fontspec-
loader determine which font-loading code mathfont uses. If you load the package with the
default-loader option, mathfont uses a built-in font-loader, and if you load the package
with fontspec-loader, mathfont uses the font-loader from fontspec. If you load mathfont
with any other optional argument, the package will interpret it as a font name and call
\setfont (described in the next section) on your argument. Doing so selects that font for
the text of your document and for the character classes in the upper section of Table 2.

The mathfont package is closely related to several other LATEX packages. The functionality
is closest to that of mathspec by Andrew Gilbert Moschou, which is compatible with X ETEX
only and selects characters from text fonts for math.5 The unicode-math package is a main

2Specifically, this extra information is a set of large variants, math-specific parameter values associated
with individual characters, and a MathConstants table. Also, math fonts often use slightly wider bounding
boxes for letters in math mode—the Computer Modern f is a well-known example. (Compare math-mode f
and italic f .) For this reason, mathfont also provides an interface to enlarge the bounding boxes of Latin
letters when they appear in math mode. See section 5 for details.

3Values for MathConstants table are different from but inspired by Ulrik Vieth, “Understanding the Æs-
thetics of Math Typesetting,” (BachoTEX Conference, 2008) and Ulrik Vieth “OpenType Math Illuminated,”
TUGboat 30 (2009): 22–31. See also Bogusław Jackowski, “Appendix G Illuminated,” TUGboat 27 (2006):
83–90.

4With X ELATEX, mathfont does not add big operators or resizable delimiters. This means you will have
to use the Computer Modern defaults, load a separate math font for resizable characters, or end up with a
document where large operators and delimiters do not scale like they do normally.

5Andrew Gilbert Moschou, “mathspec—Specify arbitrary fonts for mathematics in X ETEX,” https://

https://ctan.org/pkg/mathspec
https://ctan.org/pkg/mathspec

Loading and Basic Functionality User Guide 3

Table 2: Character Classes
Keyword Meaning Default Shape Alphabetic?

upper Upper-Case Latin Italic Yes
lower Lower-Case Latin Italic Yes
diacritics Diacritics Upright Yes
greekupper Upper-Case Greek Upright Yes
greeklower Lower-Case Greek Italic Yes
digits Arabic Numerals Upright Yes
operator Operator Font Upright Yes
delimiters Delimiter Upright No
radical Square Root Symbol Upright No
symbols Basic Math Symbols Upright No
bigops Big Operators Upright No

agreekupper Upper-Case Ancient Greek Upright Yes
agreeklower Lower-Case Ancient Greek Italic Yes
cyrillicupper Upper-Case Cyrillic Upright Yes
cyrilliclower Lower-Case Cyrillic Italic Yes
hebrew Hebrew Upright Yes
extsymbols Extended Math Symbols Upright No
arrows Arrows Upright No
extbigops Extended Big Operators Upright No
bb Blackboard Bold (double-struck) Upright No
cal Caligraphic Upright No
frak Fraktur Upright No
bcal Bold Caligraphic Upright No
bfrak Bold Fraktur Upright No

LATEX package for loading actual unicode math fonts, and if you have a unicode font with
proper math support, rather than a text font that you want to use for equations, consider
using that package instead of mathfont.6 Users who want a text font for math with pdfLATEX
should consider Jean-François Burnol’s mathastext because mathfont is incompatible with
pdfTEX.7 Finally, you may be better off using fontspec if your document does not contain any
math.8 The fontspec package is designed to load TrueType and OpenType fonts for text and
provides a high-level interface for selecting OpenType font features. Table 1 summarizes this
information. At the time of writing this document, I am not aware of a general font-loading

ctan.org/pkg/mathspec.
6Will Robertson, et al., “unicode-math—Unicode mathematics support for XeTeX and LuaTeX,” https:

//ctan.org/pkg/unicode-math.
7Jean-François Burnol, “mathastext—Use the text font in maths mode,” https://ctan.org/pkg/

mathastext. In several previous versions of this documentation, I mischaracterized the approach of mathas-
text to TEX’s internal mathematics spacing. In fact, mathastext preserves and in some cases extends rules for
space between various math-mode characters.

8Will Robertson and Khaled Hosny, “fontspec—Advanced font selection in X ELATEX and LuaLATEX,”
https://ctan.org/pkg/fontspec.

https://ctan.org/pkg/mathspec
https://ctan.org/pkg/mathspec
https://ctan.org/pkg/mathspec
https://ctan.org/pkg/mathspec
https://ctan.org/pkg/mathspec
https://ctan.org/pkg/mathspec
https://ctan.org/pkg/mathspec
https://ctan.org/pkg/mathspec
https://ctan.org/pkg/mathspec
https://ctan.org/pkg/mathspec
https://ctan.org/pkg/mathspec
https://ctan.org/pkg/unicode-math
https://ctan.org/pkg/unicode-math
https://ctan.org/pkg/mathastext
https://ctan.org/pkg/mathastext
https://ctan.org/pkg/fontspec

4 User Guide Setting the Default Font

Table 3: Commands Defined by \setfont

Command Series Shape

\mathrm Medium Upright
\mathit Medium Italic
\mathbf Bold Upright
\mathbfit Bold Italic
\mathsc Medium Small Caps
\mathscit Medium Italic Small Caps
\mathbfsc Bold Small Caps
\mathbfscit Bold Italic Small Caps

package for traditional TEX math fonts.

2 Setting the Default Font
The \mathfont command sets the default font for certain classes of characters when they
appear in math mode. It accepts a single mandatory argument, which should be a system
font name or a family name already present in the nfss. The macro also accepts an optional
argument, which should be a comma-separated list of keywords from Table 2, so the full
syntax is

\mathfont[〈keywords〉]{〈font name〉}
When you use this command, mathfont sets the default font face for every character in those
keywords to an upright or italic version of the font from the mandatory argument. See
mathfont-symbol-list.pdf for a list of symbols corresponding to each keyword. If you do
not include an optional argument, \mathfont acts on all keywords in the upper section of
Table 2 (but not including delimiters, radical, or bigops characters in X ETEX), so calling
\mathfont with no optional argument is a fast way to change the font for most common math
characters. To change the shape, you should say “=upright” or “=italic” immediately after
the keyword and before the following comma, and spaces are allowed throughout the optional
argument. For example, the command

\mathfont[lower=upright, upper=upright]{Times New Roman}

changes all Latin letters to upright Times New Roman. Once mathfont has set the default
font for a keyword in Table 2, it will ignore any future instructions to change the font again
for that keyword, and instead the package prints a warning message.

If you want to change the font for both text and math, you should use \setfont instead
of \mathfont. This command accepts a single mandatory argument:

\setfont{〈font name〉}.
It calls \mathfont without an optional argument—i.e. for the default keywords—on your
〈font name〉 and sets your document’s default text font to be the 〈font name〉. The command
also defines the eight commands in Table 3 using the 〈font name〉 and the \new macros in
the next section. Both \mathfont and \setfont should appear in the preamble only.

Setting the Default Font User Guide 5

To select OpenType features, you should put a colon after the font name and follow it
with appropriate OpenType tags.9 The syntax for specifying features depends on the font-
loader: with the built-in font-loader, you should use the standard “+〈tag〉” or “-〈tag〉” syntax,
and when using fontspec as the font-loader, you can use that package’s high-level interface.10

For example, suppose you want math with oldstyle numbers. With the built-in font-loader,
you should add “+onum,” or if using fontspec, you should add Numbers=OldStyle to your
\mathfont command. So to load Adobe Garamond Pro with oldstyle numbering, you would
say

\mathfont{Adobe Garamond Pro:+onum}

with the built-in font-loader or
\mathfont{Adobe Garamond Pro:Numbers=OldStyle}

if using fontspec. With the built-in font-loader, you should separate OpenType tags with
semi-colons, and fontspec allows you to use commas.

Whenever you select a font for anything in this package, mathfont first checks whether
your argument corresponds to a font family identifier in the nfss, and if it does, mathfont
uses that font.11 Otherwise, the package loads the font, either through the built-in font-
loader or with fontspec.12 Advanced users should know that when the engine is LuaTEX,
mathfont loads each font twice. During the first loading, mathfont makes no specifications for
the renderer, so the first version of the font will typically use node mode. During the second
loading, mathfont specifies base mode. My intention is that the font face with unspecified
renderer is for text, and the font face with base mode is for math—using two different loading
options provides the greatest access to OpenType font features throughout your document.13

You can access blackboard-bold, calligraphic, or fraktur letters in three ways. First, the
Unicode standard contains encoding slots for these types of letters, and the last five keywords
in Table 2 access this portion of the Unicode table.14 If you call \mathfont on one of these
〈keyword〉s, the package defines the macro

\math〈keyword〉{〈text〉},
9By default, mathfont enables standard ligatures, traditional TEX ligatures, and lining numbers. The

package sets smcp to true or false depending on whether it is attempting to load a small-caps font. For
the full list of OpenType features, see https://docs.microsoft.com/en-us/typography/opentype/spec/
featurelist.

10See the fontspec documentation for instructions on selecting OpenType features with fontspec.
11Specifically, if you use X ETEX, mathfont uses the font name as given, and if you use LuaTEX, mathfont

tries to use a font with family name 〈nfss family〉-base instead. This is due to mathfont’s double font
loading and means that if you add fonts to the nfss yourself in LuaTEX to use with mathfont, you should
declare the font family twice. The first declaration can be normal, and for the second declaration, you should
append -base to the family name. If you want to use OpenType font features in your equations, the second
declaration should also instruct luaotfload to use base mode. If mathfont doesn’t see 〈nfss family〉-base in
the nfss in LuaTEX, it will print a warning and use the 〈nfss family〉 instead.

12See mathfont_code.pdf for instructions on how to access the nfss family name in this case.
13The luaotfload package supports two main modes for loading fonts: node mode is the default setting,

and it supports full OpenType features in text but no OpenType features in math. The base mode supports
fewer OpenType features, but the font features work in both text and math. Other loading options such as
HarfBuzz are similarly useful for text but provide no access to OpenType features in math.

14The Math Alphanumeric Symbols block is U+1D400–U+1D7FF. Most blackboard-bold, calligraphic,
and fraktur letters live in this portion of the Unicode table, although a few live in other areas.

https://docs.microsoft.com/en-us/typography/opentype/spec/featurelist
https://docs.microsoft.com/en-us/typography/opentype/spec/featurelist

6 User Guide Local Font Changes

Table 4: Macros to Create Local Font-Change Commands
Command Series Shape

\newmathrm Medium Upright
\newmathit Medium Italic
\newmathbf Bold Upright
\newmathbfit Bold Italic
\newmathsc Medium Small Caps
\newmathscit Medium Italic Small Caps
\newmathbfsc Bold Small Caps
\newmathbfscit Bold Italic Small Caps

which behaves like a local font-change command from the next section and converts Latin
letters into 〈keyword〉 style. For example,

\mathfont[bb]{STIXGeneral}

defines \mathbb to typeset blackboard-bold letters using the glyphs from STIXGeneral. Sec-
ond, you may have a Unicode font where the normal Latin letters are themselves double
struck, calligraphic, or fraktur, and in that case, you should declare a local font-change
command using the tools in the next section. If you declare any of the macros \mathbb,
\mathcal, \mathfrak, \mathbcal, or \mathbfrak this way, mathfont will ignore the corre-
sponding keyword in future calls to \mathfont. Third, as of version 2.4, mathfont tries to
be compatible with any macros \mathbb, \mathcal, \mathfrak, \mathbcal, or \mathbfrak
that come from other packages or the kernel.

3 Local Font Changes
With mathfont, it is possible to create commands that locally change the font for math alpha-
bet characters, i.e. those marked as alphabetic in Table 2. The eight commands in Table 4
accept a 〈control sequence〉 as their first mandatory argument and a 〈font name〉 as the sec-
ond, and they define the 〈control sequence〉 to typeset any math alphabet characters in their
argument into the 〈font name〉. You can specify OpenType features as part of the 〈font
name〉 the same way as for \mathfont, described in the previous section. For example, the
macro \newmathrm looks like

\newmathrm{〈control sequence〉}{〈font name〉}.
It defines the control sequence in its first argument to accept a string of characters that it
then converts to the font name in the second argument with upright shape and medium
weight. Writing

\newmathrm{\matharial}{Arial}

creates the macro
\matharial{〈argument〉},

which can be used only in math mode and which converts the math alphabet characters in its

Lua Font Adjustments User Guide 7

〈argument〉 into the Arial font with upright shape and medium weight. The other commands
in Table 4 function in the same way except that they select different series or shape values.
Finally, know that if you specify the font for Greek letters using \mathfont, macros created
with the commands from this section will affect those characters, unlike in traditional LATEX.
Similarly, the local font-change commands will affect Cyrillic and Hebrew characters after
you call \mathfont for those keywords.

Together these eight commands will provide tools for most local font changes, but they
won’t be able to address everything. Accordingly, mathfont provides the more general
\newmathfontcommand macro. Its structure is

\newmathfontcommand{〈control sequence〉}{〈font name〉}{〈series〉}{〈shape〉},
where the 〈control sequence〉 in the first argument again becomes the macro that changes
characters to the 〈font name〉. You are welcome to use a system font name when you call
\newmathfontcommand, but the intention behind this command is that you can use an nfss
family name for the 〈font name〉. Then the series and shape values can correspond to more
obscure font faces from the nfss family that you would be otherwise unable to access. The
commands from this section should appear in the preamble only.

4 Default Math Parameters
LuaTEX uses the MathConstants table from the most recent font assigned for use in math
mode, and this means that in a document with multiple math fonts, the choice of MathCon-
stants table can depend on the order of font declaration and be unpredictable. To avoid
potential problems from using the wrong MathConstants table, mathfont provides the com-
mand

\mathconstantsfont[〈shape〉]{〈prev arg〉},
where 〈shape〉 is an optional argument that can be “upright” (default) or “italic,” and
〈prev arg〉 should be any argument that you have previously fed to \mathfont. When you
call \mathconstantsfont, mathfont forces LuaTEX to always use the MathConstants table
from the font that corresponded to that instance of \mathfont in the specified 〈shape〉. You
don’t need to set the MathConstants table when you use \setfont because the package calls
\mathconstantsfont automatically in this case. This command will not work in X ETEX and
should appear only in the preamble.

5 Lua Font Adjustments
The mathfont package provides six user-level commands to change bounding box, size, and ac-
cent positioning of characters in math mode. The command \CharmLine sets these features
for a single math-mode character relative to its text-mode counterpart, and \CharmFile does
the same thing for multiple characters at a time. (Charm stands for “character metric.”) The
argument of \CharmLine should be a list of integers and/or asterisks separated by commas
and/or spaces, and Table 5 shows how many integers you need for different types of charac-
ters. The first integer should be the unicode encoding value of the character to be adjusted,
and mathfont interprets the remaining numbers as follows.

8 User Guide Lua Font Adjustments

Table 5: Number of Integers Required in \CharmLine

Type of Character Total Number of Entries

Latin Letters 5
Delimiters, Radical Sign (Surd Character), Big Operators 33
Everything Else 3

• If the unicode value corresponds to a Latin letter, you should specify four more num-
bers. The next two integers tell LuaTEX how much to stretch the left and right sides
of the glyph’s bounding box when it appears in math mode, and the final two integers
determine horizontal placement of top and bottom math accents respectively.

• If the unicode value corresponds to a delimiter, the radical (surd) symbol, or a big
operator, you need to specify 16 pairs numbers, for a total of 32 more integers. The
first 15 pairs are horizontal and vertical scale factors that mathfont uses to create large
variants, where successive pairs determine the scaling of each next-larger glyph. The
last two integers determine horizontal placement of top and bottom math accents re-
spectively.

• If the unicode value corresponds to any other symbol, you should specify two more
integers. They determine the horizontal placement of top and bottom math accents
respectively.

Writing an asterisk tells mathfont to use whatever value it has saved in memory, either the
default value or the value from the most recent call to \CharmLine or \CharmFile. If you
specify too few charm values, mathfont will raise an error, and if you provide too many, math-
font will silently ignore the extras. These commands should appear only in your document
preamble.

For most applications, you can probably ignore charm information altogether, but if you
find bounding boxes or accent placement to be off slightly in your equations or if you want
to change the scaling for a delimiter or big operator, you should try calling \CharmLine with
different values to see what works. As is standard with decimal inputs in TEX, mathfont di-
vides your inputs by 1000 before computing with them. Positive integers mean an increase,
and negative integers mean a decrease. For a given character, the scale is usually the glyph
width. For example,

\CharmLine{97, 200, -200, *, 50}

tells mathfont to take the lower-case “a” (unicode encoding value of 97), increase the bound-
ing box on the left side by 20% of the glyph width, decrease the bounding box on the right

Table 6: Commands to Adjust Individual Characters
Command Default Value What It Does

\RuleThicknessFactor 1000 Thickness of fraction rule and radical overbar
\IntegralItalicFactor 400 Positioning of limits for integrals
\SurdVerticalFactor 1000 Vertical positioning of radical overbar
\SurdHorizontalFactor 1000 Horizontal positioning of radical overbar

Lua Font Adjustments User Guide 9

Table 7: Lua Callbacks Created by mathfont
Callback Name What It Does By Default

"mathfont.inspect_font" Nothing

"mathfont.pre_adjust" Nothing
"mathfont.disable_nomath" Tell LuaTEX that we have a math font
"mathfont.add_math_constants" Create a MathConstants table
"mathfont.fix_character_metrics" Adjust bounding boxes, add character-

specific math fields, create large variants
"mathfont.post_adjust" Nothing

side by 20% of the glyph width, do nothing to the top accent, and shift the bottom accent
right by 5% of the glyph width. There is no general formula for what charm values to use for
a given font! Rather, you will need to make a design choice based on what looks best, and if
you regularly use a particular font, consider making a custom set of charm values and up-
loading it to ctan. Additionally, if you store your charm information in a file, you can read
it in with \CharmFile. The argument of this command should be a file name, and mathfont
reads the file and feeds each line individually to \CharmLine.

The commands in Table 6 adjust other aspects of the font as indicated. Each command
accepts a single integer as an argument, and mathfont divides the input by 1000. With each
macro, mathfont multiplies the quotient by some default length, so values greater than 1000
mean scale up, and values less than 1000 mean scale down. For example,

\RuleThicknessFactor{2000}

doubles the thickness of the fraction rule and radical overbar relative to the default, which
varies between fonts. Changing the \RuleThicknessFactor is useful for fonts with partic-
ularly heavy or light weight. The \IntegralItalicFactor is important for making limits
better fit integral signs, and the \SurdVerticalFactor and \SurdHorizontalFactor com-
mands are essential when the top of the surd glyph differs from the top of its bounding box.
The six control sequences from this section should appear in the preamble only.

Finally, advanced users who want to interact with the font adjustment process directly
should use the six callbacks in Table 7. When luaotfload loads a font, mathfont (1) al-
ways calls mathfont.inspect_font and (2) calls the other five callbacks in the order that
they appear in Table 7 if the font object contains nomath=true. Functions added to these
callbacks should accept a font object as a single argument and return nothing. Further,
please be careful when loading functions in the disable_nomath, add_math_constants, and
fix_character_metrics callbacks. If you add a function there, LuaTEX will not carry out
the default behavior associated with the callback, so do not mess with these three callbacks
unless you are duplicating the default behavior or you really know what you’re doing. Oth-
erwise, you risk breaking the package. See mathfont-code.pdf for more information.

