
forest-ext
Clea F. Rees∗

2026/01/17

Abstract

forest-ext consists of various libraries for Sašo Živanović’s package forest (2017). The aim of the libraries is to
provide bug fixes or extensions currently unavailable in forest itself. I hope that this package — or at least
many of its constituents — will eventually be rendered unnecessary by an updated forest and disappear.

Contents

1 Basic usage 3

2 Tagging 3
2.0.1 Customisation . 5
2.0.2 Custom plugs . 6
2.0.3 Complete control . 7

2.1 Workflow . 8
2.2 Example . 10

3 Multiple parents 12
3.1 Creating multiple parents . 12
3.2 Connecting multiple parents . 15

4 Linguistics extensions 17

5 Utilities 18
5.1 Alignment . 18
5.2 Outer labels . 19
5.3 ‘Tagging’ keylists . 20

6 Implementation 21

ext.ling 22

ext.multi 24

ext.tagging 31
∗Bug tracker: codeberg.org/cfr/prooftrees/issues | Code: codeberg.org/cfr/prooftrees | Mirror: github.com/cfr42/prooftrees

https://codeberg.org/cfr/prooftrees/issues
codeberg.org/cfr/prooftrees/issues
https://codeberg.org/cfr/prooftrees
codeberg.org/cfr/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees

forest-ext 2 / 52

ext.utils 42

7 Toks etc. 42

8 ‘Tagging keylists’ 43

9 Styles 46

forest-ext 3 / 52

1 Basic usage

This package currently provides the following libraries:
Experimental elementary support for trees involving multi-dominance, based on ext.multi. Seeext.ling (lib.)
section 4.
Experimental elementary support for nodes with multiple parents. See section 3.ext.multi (lib.)

Experimental automatic tagging of forest trees. See section 2.ext.tagging (lib.)

Although this relies only on documented public interfaces provided by forest — no forest internals
are patched or redefined — the library does change the same pgf internals as the tagging support
in latex-lab-tikz-testphase (LATEX Project 2025b).
Bits ’n bobs. See section 5.ext.utils (lib.)

For debugging, the following alternative libraries are provided:
ext.ling plus debugging. See section 4.ext.ling-debug (lib.)

ext.multi plus debugging. See section 3.ext.multi-debug (lib.)

ext.tagging plus debugging. See section 2.ext.tagging-debug (lib.)

ext.utils plus debugging. See section 5.ext.utils-debug (lib.)

Load the libraries in the same way as standard libraries:

\usepackage[<comma-separated-list of libraries>]{forest}

or

\usepackage{forest}
\useforestlibrary{<comma-separated-list of libraries>}

For example, the following line would load forest-lib-ext.multi and apply any defaults globally.

\usepackage[ext.multi]{forest}

The following lines would load the same library, but without applying any defaults.

\usepackage{forest}
\useforestlibrary{ext.multi}

Any default settings can then be applied locally using \forestapplylibrarydefaults{⟨list of

libraries⟩}, if desired.

2 Tagging1

Note that this library requires ext.utils, described in section 5.
Experimental semi-automatic tagging of forest trees.ext.tagging (lib.)

ext.tagging plus debugging.ext.tagging-debug (lib.)

forest-lib-ext.tagging (and forest-lib-ext.tagging-debug) are based on the ‘first-aid’ in latex-lab-tikz-
testphase by Ulrike Fischer (LATEX Project 2025b). Those patches do not work with forest because

1For an introduction to support for tagged PDF in LATEX 2ε, see Fischer (2025). For gorier details see, for

example, International Organization for Standardization (2025) and pdf Association (2024a,b) and related

publications.

forest-ext 4 / 52

a forest tree includes many tikzpicture environments, some of which may never be typeset
and all of which are used only indirectly via low-level TEX boxes. Moreover, the latex-lab code
depends on pgf’s ‘remember picture’ feature, which is not compatible with forest with or without
tagging.
In addition to making it possible to tag forest environments in tagged documents, the library
produces an alternative text describing the tree semi-automatically. This is important because
trees are unlike some other images, where relatively short summaries provide a reasonable
alternative to the picture. To provide high quality access to the information contained in a typical
tree, it is necessary to describe it in detail. Both the content of the nodes and their structural
relationships must be described, together with any labels and annotations.
The current implementation does not do all of the work: it does not include information from
regular labels or the content of annotations added using regular TikZ or pgf techniques. However,
it does describe the main tree’s structure, together with the content of its nodes and edge
labels, though you may need to override the generated content for content which includes special
characters, in a quite broad sense of ‘special’.
The support for tagging adds the following forest stages which are executed in order, sandwiched
between compute xy stage and before drawing tree.
If you redefine (or load code which redefines) the default implementation of stages,
you must include or replace the additions from this library. For an example of how
to do this, see prooftrees (Rees 2026), which includes, redefines, supplements or replaces these
additions.
Empty by default. Analogous to before typesetting nodes, before packing etc.before tagging nodes

(keylist) Executes code to assign tagging code to each node in the tree.tag nodes (tag. keylist)
Note this is a tagging keylist. See section 5.3.
Empty by default. Analogous to before typesetting nodes, before packing etc.before collating tags

(keylist) Walks the tree to collate the tags into a single alternative text for the tree.collate tags (tag. keylist)
Note this is a tagging keylist. See section 5.3.
Empty by default. Analogous to before typesetting nodes, before packing etc.before tagging tree (keylist)

Calculates an approximate bounding box for the tree and inserts the collated tagging data intotag tree stage (stage)
the document’s tagging structure using tagpdf.
The code inserts a tagged structure analogous to (and heavily derived from) the alt plug provided
by latex-lab-tikz-testphase. However, unlike the latex-lab plug, the library generates the alt text
automatically by default. The result can be configured using a small number of keys. The keys’
scope is the entire tree, except that the scope of alt text is the current node.
= ⟨tokens⟩alt text (auto. toks)

Override the automatic generation of alternative text for the current node.
Internally, the code uses the further key node@ttoks. In essence, if alt text is empty,
node@ttoks is constructed from the node’s content, edge label and any applicable struc-
tural descriptors, as specified by is root, is branch and so on. If alt text is not empty, it is
used as-is. The reason for this indirect assignment — first constructing node@ttoks and only
then assigning it to alt text — is that the value of node@ttoks is constructed incrementally
(i.e. partially by delayed keys) and keeping alt text as-is makes it easy to test during every
cycle.
node@ttoks is intended for purely internal use and should NOT be used outside the library code.
alt text is the public face of this key.
Note that tagging content is always attached to nodes2. Labels, edge labels and structures

2I’m not altogether happy with this implementation, so this may change, but I want to keep things relatively

simple for now.

forest-ext 5 / 52

are not (currently?) tagged independently. So, if you specify alt text, you replace not only
the content of the node in the corresponding tag, but the content of any edge label and any
relevant structural information. So if you want, say, a branch number prepended or an indication
that the node is a ‘child‘ or ‘leaf‘, say, or that the tree forks from this node, you must include
that information into the ⟨tokens⟩ when specifying alt text.
= ⟨tokens⟩is root (auto. toks reg.)

Specify text to insert when describing the root. Default is root.
= ⟨tokens⟩is child (auto. toks reg.)

Specify text to insert when describing a child. Default is child.
= ⟨tokens⟩is leaf (auto. toks reg.)

Specify text to insert when describing a leaf node. Default is end branch.
= ⟨tokens⟩is edge label (auto. toks reg.)

Specify text to insert when describing an edge label. Default is edge label.
= ⟨tokens⟩has branches (auto. toks reg.)

Specify text to insert when describing a parent’s branches. Default is branches. A number is
inserted before to indicate the number of branches.
= ⟨tokens⟩is branch (auto. toks reg.)

Specify text to insert when describing node’s (and, hence, this subtree’s) position in the tree.
Default is branch. A number is appended to indicate which branch.

2.0.1 Customisation

Most users will not need the options explained in this section.
tagging (bool. reg.)

tagging may be used to make code conditional on the activation status of tagging. For this
reason, it has a public name. However, it should NOT be changed.
More generally, you should not suspend, resume, enable or disable tagging inside a forest
environment unless you understand what you are doing with respect to both the tagging code and

forest3.
= none|alt texttag nodes uses (choice)

Configures the keylist tag nodes. alt text installs the default auto-generation code which
constructs a value if alt text is unspecified for a (non-phantom) node.
The order in which nodes are tagged may be set using tag nodes processing order. The
default is unique=tree.
= none|alt textcollate tags uses (choice)

Configures the keylist collate tags. alt text installs code to collate the values of the
autowrapped toks option alt text.
The order of collation may be set using collate tags processing order. The default is
unique=tree depth first.
= none|alt texttag tree uses (choice)

Configures the style tag tree. alt text installs the default keys used to calculate approximate
dimensions for the bounding box and to pass the collated tags to the plug responsible for tagging
the tree.
This style is used by the default implementation of tag tree stage:

3Possibly nobody currently meets both of these requirements.

forest-ext 6 / 52

tag tree stage/.style={for root'=tag tree},

2.0.2 Custom plugs

By default, everything is noop. If the user does nothing and tagging is active, the alt plug is used.
If this is not desired, it is sufficient to use , which will make everything (remain) noop or , which
will allow the latex-lab patches to mix explosively with your forest trees. This is not recommended
unless you plan to prevent such encounters yourself. In the worst cases, the combination will
result in fatal compilation errors. In the best cases, the document will compile, but tagging will
almost certainly be broken.
However, it is possible to strike a middle course and use the infrastructure provided by this library
as the basis for custom tagging. Some approaches were explained in section 2.0.1. If those are
not sufficient, you may define custom plugs. This section explains the minimal requirements for
such plugs to be used by this library i.e. without using custom tagging.

Requirements Let Percy be the name of your custom plug. Then ext.tagging requires:

1. a plug named Percy for socket tagsupport/forest/setup;

2. a plug named Percy for socket tagsupport/forest/tag.

If both conditions are satisfied, writing

\forestset{%
plug=Percy,

}

will not result in an immediate error.
In order to do something useful, of course, Percy must do rather more than this, so let’s see what
alt is used. tagsupport/forest/setup is used right at the start of the tree. This happens before
any parenthetical argument is processed, before any star is used, before the default preamble
and well before any tree-specific preamble4. In particular, the default values of tagging keylists

may still be manipulated at this point, since the socket is used before they are transformed into
regular keylist options. The alt plug exploits this using the following code:

\socket_new_plug:nnn {tagsupport/forest/setup}{alt}
{

\forestset{
plug=alt,
tag nodes uses=alt text,
collate tags uses=alt text,
tag tree uses=alt,

}
}

Note that it is good practice to set plug here, even if the code is already plug-specific, since
the value is used later when calling the tagsupport/forest/tag socket. The content of the alt
tagsupport/forest/tag plug is very similar to the latex-lab patch for .
So let’s assume that Percy should use the same code as the alt plug for the tagsupport/forest/tag
socket, but something different for tagsupport/forest/setup.

4It uses a generic hook to inject code before an internal macro. This ensures it works for both the environment

and command forms without adding an additional TEX group, but is clearly not ideal.

forest-ext 7 / 52

As noted above, tag nodes uses, collate tags uses and tag tree uses are choice keys.
Given the way pgfkeys implements such keys, Percy might do something like this:

\NewSocketPlug {tagsupport/forest/setup}{percy}
{%

\forestset{%
plug=percy,
tag nodes uses=percy,
collate tags uses=percy,
tag tree uses=alt,

}%
}
\forestset{%

declare autowrapped toks={percy text}{},
tag nodes uses/percy/.style={%

redeclare tagging keylist={tag nodes}{%
if percy text={}{%

percy text/.option=content,
+percy text={Percy: },

}{%
percy text+={: },
percy text+/.option=content,

},
},

},
collate tags uses/percy/.style={%

redeclare tagging keylist={collate tags}{%
collate tag/.option=percy text,

},
},

}
\NewSocketPlug {tagsupport/forest/tag}{percy}
{%

\AssignSocketPlug {tagsupport/forest/tag}{alt}%
\UseSocket {tagsupport/forest/tag}%

}

This would result in each node in the tree contributing both its content and a prefix specified
by option percy text to the alternative text provided in the tagging structure of the pdf.
No structural information is added here i.e. there are no descriptions of branching or of the
relationships between nodes5.

2.0.3 Complete control

= true|falsecustom tagging (code key)

not custom tagging (code key)

If true, do not tag following trees in the current TEX group.
This key must be used BEFORE \begin{forest} or \Forest.
If you do not want to use the library’s tagging code, you can easily avoid it by simply not using it.
However, you might want to use it for only some trees or you might wish to use the pre-defined
stages as a basis for a custom configuration. In such cases, custom tagging may be used to tell
the library that it should not tag trees in the local TEX group even if tagging is active. In this

5For a more realistic implementation, see section 6 for the code used for the alt plug. For a more elaborate

example of customisation, see Rees (2026).

forest-ext 8 / 52

case, the user (or another package) is entirely responsible for tagging. The custom tagging code
may nonetheless test tagging and use the additional stages, if desired. For example, it could
redefine the stages which generate and concatenate the tags or it could install alternative plugs
into appropriate sockets.
Note that latex-lab’s code is still active in this scenario, so you are responsible for dealing with
the patches it applies for tikzpicture environments. Note also that custom tagging is not a
boolean register or option — it is simply designed to emulate one. It in fact uses the .code
handler to set an expl3 boolean variable.
The default alt plug is implemented in modular fashion, so it is possible, with care, to take a
pick-’n-mix approach.

2.1 Workflow

ext.tagging redefines forest’s stages. If you just wish to use the library to tag ordinary trees,
you can ignore the details of this definition. However, should you wish to use the library with a
custom definition of stages, the details below should enable you to do so. As with forest’s own
definitions, the various steps may be redefined, replaced, removed or extended as required. The
library also follows the forest package’s convention in providing before keylists reserved for user
use i.e. all such keylists are empty by default.
Tagging is initialised and finalised by code added to the hooks env/forest/begin and
env/forest/end.

stages/.style={
for root'={

process keylist register=default preamble,
process keylist register=preamble

},
process keylist=given options,
process keylist=before typesetting nodes,
typeset nodes stage,
process keylist=before packing,
pack stage,
process keylist=before computing xy,
compute xy stage,
process keylist=before tagging nodes,
process keylist=tag nodes,
process keylist=before collating tags,
process keylist=collate tags,
process keylist=before tagging tree,
tag tree stage,
process keylist=before drawing tree,
draw tree stage

},

This describes the default implementation with setup plug=alt and tag plug=alt6.

1. default preamble (see Živanović 2017)

2. preamble (see Živanović 2017)
6Strictly speaking, the non-trivial claims in items 10 to 15 are almost entirely false as stated. For example,

tag nodes could construct an entirely new branch and put all the tagging information there, collate tags could

then collect that information and write it to an external file and tag tree stage could embed or attach that

file. But that is not very useful to know. The proof of this is simple: if such radical divergence features in your

tagging plans, you do not need this package, while, if you do, it shouldn’t. qed. It follows that you should skip

this footnote.

forest-ext 9 / 52

3. given options (see Živanović 2017)

4. before typesetting nodes (see Živanović 2017)

5. typeset nodes stage (see Živanović 2017)

6. before packing (see Živanović 2017)

7. pack stage (see Živanović 2017)

8. before computing xy (see Živanović 2017)

9. compute xy stage (see Živanović 2017)

10. before tagging nodes Empty by default. Use in the same way as forest’s before keylists.

11. tag nodes A tagging keylist which should, when processed, ensure that each node which
requires tagging is correctly tagged in whichever way the installed tag plug and associated
code requires e.g. for the default alt configuration, alt text.

12. before collating tags Empty by default. Use in the same way as forest’s before keylists.

13. collate tags A tagging keylist which should, when processed, result in the collation of all
tags for the tree in the form expected by tag tree stage.

14. before tagging tree Empty by default. Use in the same way as forest’s before keylists.

15. tag tree stage Executes code to actually tag the tree using the data finalised in collate
tags (possibly modified by before tagging tree).

16. before drawing tree (see Živanović 2017)

17. draw tree stage (see Živanović 2017)

forest-ext 10 / 52

2.2 Example

Here is a complete example7:

\DocumentMetadata{
tagging=on,
lang=en-GB,
pdfversion=2.0,
pdfstandard=ua-2,

}
\tagpdfsetup{

math/mathml/structelem,
}
\documentclass{article}
\usepackage[ext.tagging]{forest}
\ifcsname directlua\endcsname

\usepackage{unicode-math}
\else

\usepackage[T1]{fontenc}
\fi
\title{This Test Needs No Title}
\begin{document}

ABC apple banana pear
\begin{forest}

% This example is from Jasper Habicht.
[VP

[DP[John]]
[V’, alt text=V prime,

[V[sent]]
[DP[Mary]]
[DP[D[a]][NP[letter]]]

]
]

\end{forest}
ABC apple banana pear

}
\end{document}

Note the use of alt text to avoid problems due to the use of ' with pdfTEX. If the (LATEX Project
recommended) engine LuaLATEX is used, you need not be quite so careful, but you should always check the
content of the alt text for unpleasant surprises.
If compiled with pdfLATEX, the above example yields the following structure:

<PDF>
<StructTreeRoot>
<Document xmlns="http://iso.org/pdf2/ssn"

id="ID.02"
>

<text-unit xmlns="https://www.latex-project.org/ns/dflt"
id="ID.05"

7Note that the recommended syntax for invoking and using tagging support in LATEX 2ε changes very frequently. In particular,

the recommended options for \DocumentMetadata and \tagpdfsetup, including whether to use the latter at all, are not at all stable.

You should therefore check and use the recommended options at the time your document is written — there is nothing in the code

before \documentclass which is in any way particular to using the libraries provided by this package. That is, deviations from

documented best practice in the use of \DocumentMetadata and \tagpdfsetup are either due to mistakes on my part or the result

of updates following the publication of this document. In either case, you should avoid replicating the deviations in your own code.

forest-ext 11 / 52

rolemaps-to="Part"
>

<text xmlns="https://www.latex-project.org/ns/dflt"
id="ID.06"
xmlns:Layout="http://iso.org/pdf/ssn/Layout"
Layout:TextAlign="Justify"
rolemaps-to="P"

>
<?MarkedContent page="1" ?>ABC apple banana pear
<Figure xmlns="http://iso.org/pdf2/ssn"

id="ID.07"
alt="root VP 2 branches branch 1 DP child John end branch V prime V child

sent end branch DP child Mary end branch DP 2 branches branch 1 D child
a end branch branch 2 NP child letter end branch "

↪→

↪→

xmlns:Layout="http://iso.org/pdf/ssn/Layout"
Layout:BBox="{ 259.4641, 542.90266, 407.35223, 667.19801 }"

>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>

</Figure>
<?MarkedContent page="1" ?> ABC apple banana pear

</text>
</text-unit>

</Document>
</StructTreeRoot>

</PDF>

A similar result is obtained with LuaLATEX, but the output is a bit longer as it includes many empty
MarkedContents.

forest-ext 12 / 52

3 Multiple parents

This library provides some basic facilities for formatting trees which are not technically trees in
forest’s sense. In the (one) strict sense of ‘tree’, every node but one has exactly one parent, while
the one has none.
However, in a different/looser sense of ‘tree’, every node but one has at least one parent, while
the one has none. This library makes it a bit easier to draw such trees with forest.
The library began in response to a query from Alan Munn on TEX se and initially focused
entirely on multi-dominance structures in linguistics. Support for those structures is available in
the ext.ling library, which now uses the more general ext.multi.
The styles in section 3.1 support drawing connections from a child to additional parents not
currently in the tree, while those in section 3.2 support adding connections to additional extant
parents.
Note that

• styles are always specified for the child node;

• the child must have exactly one ‘natural’ parent i.e. it must be part of the existing tree
structure when the style is used.

Load ext.multi or ext.multi-debug as described in section 1.

3.1 Creating multiple parents

Note:

• the child should be created as the child of its ultimate grandparent;

• the child’s parents will all be children of the child’s grandparent.

For example, consider the tree,

Grandparent

Parent 1 Parent 2

Child

Parent 3

This structure can be conveniently created using multi, but to translate it into the bracket
notation forest uses, all of Child’s parents should first be omitted and Child should instead be
specified as the child of Grandparent.

\begin{forest}
[Grandparent [Child]]

\end{forest}

Parents 1, 2 and 3 should be specified as an option to Child:

\begin{forest}
[Grandparent [Child, multi={Parent 1,Parent 2,Parent 3}]]

\end{forest}

forest-ext 13 / 52

= {⟨content of parent 1, . . . , content of parent n⟩} where n ∈ N, n > 1multi (style)

For every i ∈ N such that 0 < i ≤ n, create a new child of the current node’s parent with content
⟨content of parent i⟩. Then detach the current node from its parent and attach it as the child of
its n parents.

\begin{forest}
[A
[D,
multi={B,D}

]
]

\end{forest}

A

B

D

D

If parent anchor and/or child anchor are set, edges are drawn to/from these points as one
would expect.

\begin{forest}
[A
[D, multi={B,C},]
[E, parent anchor=children,
[J, multi={F,G,H,I},]

]
[K
[N, multi={L,M}, child

anchor=parent,]↪→

]
]

\end{forest}

A

B

D

C E

F G

J

H I

K

L

N

M

If the edges library is loaded, the multi library loads the TikZ library, ext.paths.ortho and tries to
emulate forked edge appropriately8.

\begin{forest}
forked edges,
[A
[D, multi={B,C}]
[E
[I, multi={F,G,H}]

]
[J
[N, multi={K,L,M}]

]
]

\end{forest}

A

B

D

C E

F G

I

H

J

K L

N

M

If we apply forked edges to only part of a tree, we can produce the rather ugly, but hopefully
informative, structure below.

8The alignment seems to me to be close, but not always quite perfect, though I do not know why at the moment.

forest-ext 14 / 52

Box 3.5

\begin{forest}
[R [Child, multi={P1,P2,P3},every parent=blue,]

[Aunt [Cousin 1][Cousin 2]]]↪→

\end{forest}

R

P1 P2

Child

P3 Aunt

Cousin 1 Cousin 2

\begin{forest}
for tree={%
child anchor=parent,
parent anchor=children,
fork sep'=1em,

},
[O
[P
[S, multi={Q,R}]

]
[T, forked edges=descendants,
[Z,multi={U,V,W,X,Y}]

]
]

\end{forest}

O

P

Q

S

R

T

U V W

Z

X Y

Note that the change to fork sep for the tree in forest’s preamble affects the edges drawn from
and to the nodes inserted by multi. This is because the library forwards values given to fork
sep and applications of forked edge so that forest keys work in (hopefully) reasonably intuitive
ways.
Should you not want such keys forwarded, either load the library without defaults (see section 1)
or override the behaviour for the current TEX group with, say,

\forestset{%
unautoforward=fork sep,
null/.style={},
forked edge'/.forward to=/forest/null,

}

The phantom style is needed because, unlike forest’s provision for its own forwarding facilities,
pgfkeys provides no easy way to undo the effects of the .forward to handler.
Since the library is currently experimental and implementation is complicated if one wants to
avoid avoid using forest internals, configuration options are currently limited.
= {⟨key-value list⟩}every parent (keylist)

Apply ⟨key-value list⟩ to all the current node’s parents. If multi is used, these are the parents
created as a result; otherwise, it is the current node’s singular parent or none, if the node has no
parent.
Initial value: empty.
Box 3.5 illustrates usage with a simple example.

forest-ext 15 / 52

3.2 Connecting multiple parents

Sometimes one wants instead to give the current node an additional parent without removing the
existing one and one does not wish to add the additional parent, but rather to specify some other
extant node in the tree.
This kind of structure cannot be so easily automated, especially if one wants to avoid edges
crossing each other or nodes. However, it is possible to provide some convenient styles to assist in
manually specifying such structures.
= {⟨dynamic tree operation⟩}{⟨⟨extant node⟩:⟨keylist⟩⟩}also parent (style)

= {⟨dynamic tree operation⟩}{⟨extant node⟩}
= {⟨⟨extant node⟩:⟨keylist⟩⟩}+also parent (style)

= {⟨extant node⟩}
= {⟨⟨extant node⟩:⟨keylist⟩⟩}also parent+ (style)

= {⟨extant node⟩}
Adds ⟨extant node⟩ as an additional parent of the current node. ⟨keylist⟩ specifies a list of
key-values for the connecting node (see below).
The current node becomes ⟨extant node⟩’s fosterling, while ⟨extant node⟩ becomes the current
node’s foster parent.
The styles work by creating a new child of ⟨extant node⟩. This node affects the structure of the tree
and can be configured in the usual way, but it is not visible. One might say it is ‘semi-phantom’:
it is not quite phantom because, for instance, it has visible edges which serve to connect the
current node with the additional parent.
For an illustration, see the (rather odd-looking) family tree in box 3.69.
+also parent prepends the new child to ⟨extant node⟩; also parent+ appends it. These are just
shorthand wrappers around also parent using the prepend and append dynamic tree operations.
Note that ⟨dynamic tree operation⟩ should create a new node, though this is not enforced.
Visit the current node’s fosterlings.fosterlings (step)

Visit the current node’s foster parents.foster parents (step)

= {⟨nodewalk⟩}every fosterling (step)

Visit every fosterling in ⟨nodewalk⟩.
= {⟨nodewalk⟩}every foster parent (step)

Visit every foster parent in ⟨nodewalk⟩.
Visit the fosterling which the current node connects to a foster parent.c fosterling (step)

Visit the foster parent which the current node connects to a fosterling.c foster parent (step)

This last pair of steps are only really useful if you want to change edge path, since they are only
accessible from a constructed, typically invisible node.
= true|falsedebug multi phantoms (bool.

reg.)
not debug multi phantoms

(bool. reg.) Render the normally invisible nodes created by also parent etc. visible for debugging purposes.
If the nodes have no content, their borders are drawn in red; otherwise, their contents are rendered
in red. Visible rendering does not change the remainder of the tree e.g. it does not alter the
spacing of nodes or the paths of edges. However, if the nodes occur near the tree’s boundaries,
the bounding box may expand to accommodate them10.

9The names are from the children’s novels by Cynthia Voigt.
10It should not be hard to prevent this, but does not seem worth the trouble.

forest-ext 16 / 52

Box 3.6

Cilla

Eunice

Abigail Tillerman

John Liza

Dicey James Maybeth Sammy

Francis Verricker Samuel

John

\begin{forest}
forked edges,
delay={%
for tree={%
+content=\strut,

},
},
[,coordinate,calign primary child=1,calign secondary child=2,calign=midpoint,
[Cilla
[Eunice]

]
[Abigail Tillerman
[John,also parent={append}{j}]
[Liza, also parent={append}{!r3}, for children={also parent={append}{!un}}
[Dicey]
[James]
[Maybeth]
[Sammy]

]
[Francis Verricker,no edge]
[Samuel, also parent+={!r3}]

]
[John, name=j, no edge
]

]
\end{forest}

forest-ext 17 / 52

Box 3.7

Cilla

Eunice

Abigail Tillerman

John Liza

Dicey James Maybeth Sammy

Francis Verricker Samuel

John

{%
\forestset{debug multi phantoms}%
\begin{forest}
forked edges,
delay={%
for tree={%
+content=\strut,

},
},
[,coordinate,calign primary child=1,calign secondary child=2,calign=midpoint,
[Cilla
[Eunice]

]
[Abigail Tillerman
[John,also parent={append}{j}]
[Liza, also parent={append}{!r3}, for children={also parent={append}{!un}}
[Dicey]
[James]
[Maybeth]
[Sammy]

]
[Francis Verricker,no edge]
[Samuel, also parent+={!r3}]

]
[John, name=j, no edge
]

]
\end{forest}%

}

Requires ext.multi-debug. If the debugging code is not loaded, use of these keys will do nothing
but write a warning to the console and log.
For an example, see box 3.7. Note that the content of the forest environment is identical to
that in box 3.6. The red squares are the effect of toggling debug multi phantoms beforehand.

4 Linguistics extensions

This library provides some elementary styles for formatting trees involving multi-dominance,
together with a style for dealing with empty nodes resistant to the linguistics library’s nice empty
nodes. These former were developed in response to a query from Alan Munn on TEX se.
See also section 3, especially for straight connections to multiple parents and dynamic creation of
multiple parents as children of a single grandparent.
= {⟨keylist⟩}pretty nice empty nodes

(style)

forest-ext 18 / 52

Make empty nodes prettier in cases where nice empty nodes cannot be used. ⟨keylist⟩ permits
supplementing or overriding what is done for empty nodes.
Note that nice empty nodes is preferable, so should be used where possible. For details, see the
documentation of nice empty nodes in Živanović (2017).
For example11,

\begin{forest}
for tree={
calign angle=60,
align middle child,

},
pretty nice empty nodes={
for current and

siblings={anchor=parent},↪→

parent anchor=children,
calign with current edge,

},
[a
[b]
[
[
[d]
[e
[f]
[g]
[h]

]
]
[c]

]
]

\end{forest}

a

b

d e

f g h

c

5 Utilities

This library provides tagging keylists, together with a few styles which do not really fit anywhere
else.

5.1 Alignment

= ⟨option⟩align middle child (style)

If the current node has an odd number of children, sets calign child to the middle child and
sets calign= ⟨option⟩. ⟨option⟩ should, therefore, be a valid value for calign.
If ⟨option⟩ is omitted, a default of child edge is applied.
See box 4.1 for an example.
= ⟨option⟩align middle children (style)

Sets align middle child= ⟨option⟩ for the tree.
11Based on TEX se answer: 717677. Based on TEX se question 717592 by argo.

https://tex.stackexchange.com/a/717677
https://tex.stackexchange.com/q/717592

forest-ext 19 / 52

Box 5.1

1
21

1
22

1
23

1
23

1
22

1
23

1
23

1
21

1
22

1
23

1
23

1
22

1
23

1
23

n = 1

n = 2

n = 3

\begin{forest}
for tree={
parent anchor=children,
child anchor=parent,

},
delay={
for descendants={
content/.process={Ow{level}{$\frac{1}{2^{#1}}$}},

},
for nodewalk={
fake=root,
while nodewalk valid={1}{1}%

}{
outer label/.process={Ow{level}{{$n=#1$}:{anchor=west}}}%

},
},
[[[[][]] [[][]]] [[[][]] [[][]]]]

\end{forest}

5.2 Outer labels

Outer labels are nodes added after the tree is drawn, aligned with a boundary of the bounding
box of the completed tree and nodes within the tree. The idea is to enable the addition of labels
such as those shown in box 5.1.
= ⟨anchor⟩outer labels at (toks reg.)

Additional alignment point for any outer labels. ⟨anchor⟩ should be a valid anchor for the ‘current
bounding box‘ when the tree has been drawn, but additional code is not yet executed.
The default is east, which is probably what is wanted for most trees using the forest default
value of grow etc.
Note that this is a register. You cannot use different values for different parts of a tree.
= {⟨keylist⟩}outer labels (keylist reg.)

pgf/TikZ key-values applied to all nodes where outer label is set. Options passed to outer
label are applied later, so may override defaults for the tree.
The default is anchor=base west.
Note that this is a register. You cannot use different values for different parts of a tree.
= {⟨content⟩}outer label (style)

= {⟨content⟩}:{⟨options⟩}
Create a label aligned with the current node and the additional alignment point specified by
outer labels at with content ⟨content⟩. If ⟨options⟩ are given, they are passed to the code
responsible for creating the node.

forest-ext 20 / 52

5.3 ‘Tagging’ keylists

A ‘tagging keylist’ is very similar to a forest keylist option, but its default value can be changed
and/or it can be redeclared12. For motivation, see section 2.
More specifically, inside a forest environment, it behaves exactly like a regular forest keylist
option13. However, outside a forest environment, its default value can be modified and/or
replaced. Where this is not a requirement, you should use a regular keylist option since tagging

keylists are subject to additional limitations and the implementation is significantly less efficient.
Important:

1. These keys are not really tagging-specific and do not require tagging to be active, despite
the names, so may be useful in other contexts.

2. These keys are only available outside forest environments.

3. Tagging keylists cannot be declared as registers14. Each tagging keylist corresponds to a
keylist option. The option is automatically declared just before every forest environment
in the current TEX group.

4. An additional TEX group is added to all forest environments. This ensures that the option
declaration is properly localised, which in turn allows any tagging keylists’ default values to
be further manipulated after the current forest is finished.

5. Outside forest environments, unlike forest keylists, tagging keylists are not ordered and do
not store more than one instance of any key. The underlying implementation uses l3prop
property lists.
Inside forest environments, tagging keylists are ordered and behave as regular forest keylist
options. l3prop property lists are not used inside forest environments.

6. Outside the forest environment, they may be manipulated only using the keys defined by

this library.

7. Inside the forest environment, they may be manipulated only using regular forest methods.

Note that to actually influence a tree, any tagging keylist must be processed during the construction
of that tree. Simply declaring a tagging keylist with some set of options will not, in itself, affect
the typeset result in anyway. This is equally true of regular forest keylists. Please see Živanović
(2017) for details.
= {⟨keylist⟩}{⟨key-value list⟩}declare tagging

keylist,redeclare tagging
keylist (code key)

Declares or redeclares a forest keylist option.
Available only outside forest environments.
Since keylists cannot actually be redeclared, what really happens is this:

• An internal property list is defined to hold ⟨default⟩. This may then be manipulated using
the various keys explained below.

• At the start of each forest environment (within the current TEX group), a keylist option is
declared. The default value passed to declare keylist is not necessarily ⟨key-value list⟩.
It is, rather, a key-value list derived from the contents of the underlying property list at the
time. Hence, the default may be further manipulated after the keylist option is declared.

12As far as I can tell, this is not possible for regular forest keylist options. Once declared, their default values

are fixed.
13This is because it is a regular keylist option at this point.
14This is not a limitation since changing the default value of a keylist register is trivial.

forest-ext 21 / 52

Note that if you do not want the default be be manipulable after the keylist is declared, you
should use the forest key declare keylist= {⟨keylist⟩}{⟨key-value list⟩} instead, as this will be
far more efficient.
= {⟨keylist⟩}{⟨key-value list⟩}tagging keylist put (code

key) Adds the contents of ⟨key-value list⟩ to a ⟨keylist⟩ declared with declare tagging keylist.
Note that if ⟨key-value list⟩ includes an occurrence of a key already in the list, the key will be
replaced, even if the value differs.
= {⟨keylist⟩}{⟨key⟩}tagging keylist remove key

(code key) Removes ⟨key⟩ from ⟨keylist⟩, where ⟨keylist⟩ was previously declared with declare tagging
keylist.
Available only outside forest environments.
Note this removes the ⟨key⟩ regardless of its current value (if any).
= {⟨keylist⟩}{⟨key-value list⟩}tagging keylist remove (code

key) For each ⟨key⟩ or ⟨key⟩= ⟨value⟩ pair in ⟨key-value list⟩, removes ⟨key⟩ from ⟨keylist⟩ iff it has the
specified ⟨value⟩ (if given) or no value (otherwise), where ⟨keylist⟩ was previously declared with
declare tagging keylist.
Available only outside forest environments.
Note that a valueless key is distinct from one with an empty value. To remove ⟨key⟩ iff it has no
value, use ⟨key⟩. To remove ⟨key⟩ iff it’s value is empty, use ⟨key⟩= or ⟨key⟩=.

6 Implementation

A double underscore (__) or an ‘at’ (@) indicates an internal macro or key. These are liable to
change without notice and should not be used elsewhere.

ext.ling

Clea F. Rees∗

2026/01/17

<*sty>

1 \NeedsTeXFormat{LaTeX2e}
2 %% $Id: forest-ext-ling.dtx 11498 2026-01-17 00:35:22Z cfrees $}
3 ⟨!debug⟩ \ProvidesForestLibrary{ext.ling}[2025-12-05 v0.1]
4 ⟨debug⟩ \ProvidesForestLibrary{ext.ling-debug}[2025-12-05 v0.1]
5 %
6 ⟨!debug⟩ \disable@package@load {forest-lib-ext.ling-debug}
7 ⟨debug⟩ \disable@package@load {forest-lib-ext.ling}
8 {%
9 ⟨!debug⟩ \PackageWarning {ext.ling (forest library)}

10 ⟨debug⟩ \PackageWarning {ext.ling-debug (forest library)}
11 {Only one of ext.ling and ext.ling-debug should be loaded.
12 Since the
13 ⟨!debug⟩ ext.ling
14 ⟨debug⟩ ext.ling-debug
15 library has already been loaded, I will ignore your request for
16 ⟨!debug⟩ ext.ling-debug.%
17 ⟨debug⟩ ext.ling.%
18 }%
19 }

<*debug> </debug>

pretty nice empty nodes (style) This is in the ext.ling library mostly because nice empty nodes is in the linguistics library and
not because linguists are more picky about their empty nodes than anybody else.
Is this even still useful?
Based on TEX se answer: 717677. i gwestiwn Based on TEX se question 717592 by argo.

20 \forestset{%
21 pretty nice empty nodes/.style={%
22 for tree={%
23 calign=fixed edge angles,
24 parent anchor=children,
25 delay={%
26 if content={}{%
27 inner sep=0pt,
28 edge path'={(!u.parent anchor) -- (.children)},
29 #1,
30 }{},
31 },
32 },
33 },
34 }
∗Bug tracker: codeberg.org/cfr/prooftrees/issues | Code: codeberg.org/cfr/prooftrees | Mirror: github.com/cfr42

/prooftrees

22

https://tex.stackexchange.com/a/717677
https://tex.stackexchange.com/q/717592
https://codeberg.org/cfr/prooftrees/issues
codeberg.org/cfr/prooftrees/issues
https://codeberg.org/cfr/prooftrees
codeberg.org/cfr/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees

forest-lib-ext.ling 23 / 52

</sty>

ext.multi

Clea F. Rees∗

2026/01/17

<*sty>

35 \NeedsTeXFormat{LaTeX2e}
36 %% $Id: forest-ext-multi.dtx 11495 2026-01-17 00:08:58Z cfrees $}
37 ⟨!debug⟩ \ProvidesForestLibrary{ext.multi}[2025-12-05 v0.1]
38 ⟨debug⟩ \ProvidesForestLibrary{ext.multi-debug}[2025-12-05 v0.1]
39 %
40 ⟨!debug⟩ \disable@package@load {forest-lib-ext.multi-debug}
41 ⟨debug⟩ \disable@package@load {forest-lib-ext.multi}
42 {%
43 ⟨!debug⟩ \PackageWarning {ext.multi (forest library)}
44 ⟨debug⟩ \PackageWarning {ext.multi-debug (forest library)}
45 {Only one of ext.multi and ext.multi-debug should be loaded.
46 Since the
47 ⟨!debug⟩ ext.multi
48 ⟨debug⟩ ext.multi-debug
49 library has already been loaded, I will ignore your request for
50 ⟨!debug⟩ ext.multi-debug.%
51 ⟨debug⟩ ext.multi.%
52 }%
53 }

54 \forestset{

Public options.

every parent (keylist)
other parents (keylist)

Keylists.

55 declare keylist={every parent}{},
56 declare keylist={other parents}{},

Generic toks.

Internal options.

57 declare boolean={multi@connector}{0},
58 declare count={multi@n@parents}{0},
59 declare count={multi@connects@fosterling}{-1},
60 declare count={multi@connects@foster@parent}{-1},
61 declare keylist={multi@foster@parents}{},
62 declare keylist={multi@fosterlings}{},
63 declare keylist={multi@all@parents}{},
64 declare toks={multi@edge}{},
65 declare toks={multi@edge@subpath}{edge},
66 declare toks={multi@edge@sublast}{--},
67 declare toks={multi@edge@route}{--},
68 declare toks={multi@parent@of}{},

∗Bug tracker: codeberg.org/cfr/prooftrees/issues | Code: codeberg.org/cfr/prooftrees | Mirror: github.com/cfr42
/prooftrees

24

https://codeberg.org/cfr/prooftrees/issues
codeberg.org/cfr/prooftrees/issues
https://codeberg.org/cfr/prooftrees
codeberg.org/cfr/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees

forest-lib-ext.multi 25 / 52

My answer: 695602.. Based on TEX se answer: 695600 by Alan Munn., which was based on
my original answer.
Public registers.

69 ⟨debug⟩ declare boolean register={debug multi phantoms},
70 ⟨debug⟩ not debug multi phantoms,

Internal scratch registers.

71 declare count register={multi@temp@counta},
72 multi@temp@counta=0,
73 declare toks register={multi@temp@toksa},
74 multi@temp@toksa={},
75 declare toks register={multi@temp@toksb},
76 multi@temp@toksb={},

fosterlings (step)
foster parents (step)

every fosterling (step)
every foster parent (step)

c fosterling (step)
c foster parent (step)

Convenience multi-step nodewalk steps.

77 define long step={fosterlings}{}{%
78 if multi@fosterlings={}{}{%
79 split option={multi@fosterlings}{,}{id}%
80 }%
81 },
82 define long step={foster parents}{}{%
83 if multi@foster@parents={}{}{%
84 split option={multi@foster@parents}{,}{id}%
85 }%
86 },
87 define long step={every fosterling}{n args=1}{%
88 filter={#1}{>O_=!{multi@foster@parents}{}}%
89 },
90 define long step={every foster parent}{n args=1}{%
91 filter={#1}{>O_=!{multi@fosterlings}{}}%
92 },
93 define long step={c fosterling}{}{%
94 id/.option=multi@connects@fosterling%
95 },
96 define long step={c foster parent}{}{%
97 id/.option=multi@connects@foster@parent%
98 },

multi (style) Make this node a grandchild of its current parent and insert specified parents.

99 multi/.style={%
100 ⟨debug⟩ debug@multi=Execute style multi at,
101 ⟨debug⟩ debug@multi@option=id,
102 split={#1}{,}{multi@parent},
103 ⟨debug⟩ debug@multi@option=multi@n@parents,
104 ⟨debug⟩ debug@multi@option=multi@all@parents,
105 before typesetting nodes={%
106 multi@parents/.process={%
107 OOOw
108 {name}
109 {multi@n@parents}
110 {multi@all@parents}
111 {{##1}}%
112 },
113 delay n=2{%
114 multi@edge+= {(.child anchor) },
115 multi@temp@counta'=0,
116 split option={multi@all@parents}{,}{multi@also@parent},

https://tex.stackexchange.com/a/695602
https://tex.stackexchange.com/a/695600

forest-lib-ext.multi 26 / 52

117 },
118 delay n=3{%
119 ⟨debug⟩ debug@multi@option=id,
120 ⟨debug⟩ debug@multi@option=multi@edge,
121 edge path'/.option=multi@edge,
122 },
123 },
124 },

multi@also@parent (style) Auxiliary.

125 multi@also@parent/.style={%
126 ⟨debug⟩ debug@multi=Execute style multi@also@parent to for #1 at,
127 ⟨debug⟩ debug@multi@option=id,
128 multi@temp@counta'+=1,
129 multi@edge+/.process={
130 OR= ? O w
131 {multi@n@parents}{multi@temp@counta}
132 {multi@edge@sublast}{multi@edge@subpath}
133 {##1 (#1.parent anchor) }
134 },
135 },

multi@parent (style) Insert a co-parent.
Note delay required in case name specified by user.

136 multi@parent/.style={%
137 ⟨debug⟩ debug@multi=Execute style multi@parent to add #1 at,
138 ⟨debug⟩ debug@multi@option=id,
139 ⟨debug⟩ debug@multi@option=every parent,
140 multi@n@parents'+=1,
141 delay/.process={Ow{multi@n@parents}{%
142 multi@all@parents+/.process={Ow{name}{parent ##1 of ####1}},
143 insert before/.process={%
144 OOw2{name}{every parent}
145 {%
146 [#1,name=parent ##1 of ####1,multi@parent@of=####1,
147 ####2]%
148 }%
149 },
150 }%
151 },
152 },
153 % \end{fstyle}% ^^A >>>
154 % \begin{fstyle}{multi@parents}% ^^A <<<
155 % Adjust relns.
156 %
157 % Arguments: name, no.~parents, parents
158 % \begin{macrocode}
159 multi@parents/.style n args=3{%
160 ⟨debug⟩ debug@multi=Executing style multi@parents with,
161 ⟨debug⟩ debug@multi=options #1 #2 and #3,
162 if={>nw+P{#2}{isodd(##1)}}{%
163 multi@temp@counta/.expanded=\inteval{(#2 + 1)/2},
164 for nodewalk={%
165 name/.expanded=parent \foresteregister{multi@temp@counta} of #1 %
166 }{%
167 append=#1,
168 },
169 }{%
170 multi@temp@counta/.expanded=\inteval{#2/2},

forest-lib-ext.multi 27 / 52

171 ⟨debug⟩ debug@multi@register=multi@temp@counta,
172 for nodewalk={%
173 name/.expanded=parent \foresteregister{multi@temp@counta} of #1 %
174 }{%
175 insert after={%
176 [,coordinate,no edge,
177 tier=multi@tier@#1@parents,
178 delay={%
179 ⟨debug⟩ debug@multi=Appending #1 to,
180 ⟨debug⟩ debug@multi@option=name,
181 append=#1,
182 },
183]%
184 },
185 },
186 },
187 },

multi@add@parent (style) Connect an additional parent.
Argument: id of current node; dynamic tree operation; keylist for child; id of additional parent
(extant).

188 multi@add@parent/.style n args=4{%
189 ⟨debug⟩ debug@multi=Execute style multi@add@parent to add #4 at,
190 ⟨debug⟩ debug@multi@option=id,
191 ⟨debug⟩ debug@multi=Arguments: #1: #2: #3: #4,
192 ⟨debug⟩ debug@multi@option=every parent,
193 delay n=2{%
194 for nodewalk={%
195 id=#4%
196 }{%
197 multi@fosterlings+=#1,
198 ⟨debug⟩ debug@multi=dynamic action #2,
199 ⟨debug⟩ debug@multi@option=parent anchor,
200 #2={%
201 [,
202 multi@phantom,
203 multi@connector,
204 multi@connects@fosterling=#1,
205 multi@connects@foster@parent=#4,
206 for current/.option=!{id=#1}.every parent,
207 delay n=3{%
208 do dynamics,
209 edge path'/.process={%
210 Ow {!{id=#1}.multi@edge@route} {%
211 (!c fosterling.child anchor)
212 ##1 (!c foster parent.parent anchor) %
213 }%
214 },
215 also={#3},
216 ⟨debug⟩ debug@multi@option=id,
217 ⟨debug⟩ debug@multi=edge path and edge,
218 ⟨debug⟩ typeout/.option=edge path,
219 ⟨debug⟩ debug@multi@option=edge,
220 },
221]%
222 },%
223 },
224 },
225 },

forest-lib-ext.multi 28 / 52

also parent (style)
+also parent (style)
also parent+ (style)

Make an existing node in the tree an additional parent of the current node. What actually
happens is that the specified node gets a new child with a copy of the current node’s content.
However, this child is just like a phantom, except that it has a visible edge. This edge can then
be defined to look as if it connects the current node to the additional parent.
Arguments: dynamic tree operation; parent:options for new node
Why do I need to double hashes twice here?

226 also parent/.style 2 args={%
227 ⟨debug⟩ debug@multi=Executing style also parent at,
228 ⟨debug⟩ debug@multi@option=id,
229 delay={%
230 split={#2}{:}{multi@temp@toksa,multi@temp@toksb},
231 ⟨debug⟩ debug@multi@register=multi@temp@toksa,
232 ⟨debug⟩ debug@multi@register=multi@temp@toksb,
233 if nodewalk valid={name/.register=multi@temp@toksa}{%
234 multi@temp@counta/.option=!{name/.register=multi@temp@toksa}.id,
235 }{%
236 multi@temp@counta/.option/.process={Rw{multi@temp@toksa}{##1.id}},
237 },
238 ⟨debug⟩ debug@multi@register=multi@temp@counta,
239 multi@foster@parents+/.register=multi@temp@counta,
240 multi@add@parent/.process={%
241 O_RwR
242 {id}
243 {#1}
244 {multi@temp@toksb}
245 {{##1}}
246 {multi@temp@counta}%
247 },
248 },
249 },
250 +also parent/.style={%
251 ⟨debug⟩ debug@multi=Executing style +also parent at,
252 ⟨debug⟩ debug@multi@option=id,
253 also parent={prepend}{#1},
254 },
255 also parent+/.style={%
256 ⟨debug⟩ debug@multi=Executing style also parent+ at,
257 ⟨debug⟩ debug@multi@option=id,
258 also parent={append}{#1},
259 },

multi@phantom (style) Not really phantoms.

260 multi@phantom/.style={
261 before drawing tree={%
262 ⟨debug⟩ if debug multi phantoms={%
263 ⟨debug⟩ rectangle,
264 ⟨debug⟩ if content={}{,
265 ⟨debug⟩ draw=red,
266 ⟨debug⟩ }{%
267 ⟨debug⟩ red,
268 ⟨debug⟩ },
269 ⟨debug⟩ }{%
270 coordinate,
271 ⟨debug⟩ },
272 typeset node,
273 },
274 },

forest-lib-ext.multi 29 / 52

add parent (style) Add a new node to the tree and connect it to the current node.

debug@multi (style)
debug@multi@register (style)

debug@multi@option (style)

Internal styles for debugging. Should not be used directly, but may be applied by loading the
debugging code.

275 ⟨debug⟩ debug@multi/.code={%
276 ⟨debug⟩ \ExpandArgs {e} \typeout{[Forest ext.multi debug]:: \detokenize{#1}}%
277 ⟨debug⟩ },
278 ⟨debug⟩ debug@multi@register/.code={%
279 ⟨debug⟩ \ExpandArgs {e} \typeout{[Forest ext.multi debug]:: \detokenize{#1}
280 ⟨debug⟩ = \foresteregister{#1}%
281 ⟨debug⟩ }%
282 ⟨debug⟩ },
283 ⟨debug⟩ debug@multi@option/.code={%
284 ⟨debug⟩ \ExpandArgs {e} \typeout{[Forest ext.multi debug]:: \detokenize{#1}
285 ⟨debug⟩ = \foresteoption{#1}%
286 ⟨debug⟩ }%
287 ⟨debug⟩ },

debug multi phantoms (style)
not debug multi phantoms (style)

Supply a code key as substitute for the boolean if the debugging code isn’t loaded.

288 ⟨!debug⟩ debug multi phantoms/.code={%
289 ⟨!debug⟩ \PackageWarning{forest-lib-ext.multi}{%
290 ⟨!debug⟩ You requested the style 'debug multi phantoms',
291 ⟨!debug⟩ but did not load the debugging code.
292 ⟨!debug⟩ Either load 'ext.multi-debug' instead of
293 ⟨!debug⟩ 'ext.multi' or remove this style.
294 ⟨!debug⟩ }%
295 ⟨!debug⟩ },
296 ⟨!debug⟩ node debug multi phantoms/.code={%
297 ⟨!debug⟩ \PackageWarning{forest-lib-ext.multi}{%
298 ⟨!debug⟩ You requested the style 'not debug multi phantoms',
299 ⟨!debug⟩ but did not load the debugging code.
300 ⟨!debug⟩ Either load 'ext.multi-debug' instead of
301 ⟨!debug⟩ 'ext.multi' or remove this style.
302 ⟨!debug⟩ }%
303 ⟨!debug⟩ },

We need empty defaults here so that e.g. ext.ling can be loaded without edges, in which case the
set of default is empty. If edges is loaded, we overwrite this style in a hook at begindocument.

304 ⟨!debug⟩ libraries/ext.multi/defaults/.style=
305 ⟨debug⟩ libraries/ext.multi-debug/defaults/.style=
306 {},
307 }

We need conditional code in case edges is loaded.

308 \AddToHook{begindocument}{%
309 \IfPackageLoadedT{forest-lib-edges}{%
310 ⟨!debug⟩ \PackageInfo{forest-lib-ext.multi}
311 ⟨debug⟩ \PackageInfo{forest-lib-ext.multi-debug}
312 {Found the edges library. Enabling support code.}%
313 \usetikzlibrary{ext.paths.ortho}%
314 \forestset{%

multi@forked@edge (style) I wish forest used booleans or similar a bit more extensively here so this was easier to handle
(without clobbering).

315 multi@forked@edge/.style={%
316 /forest/.cd,

forest-lib-ext.multi 30 / 52

317 /tikz/ext/ortho/distance/.process={Ow{fork sep}{-##1}},
318 every parent+={%
319 forked edge,
320 /tikz/ext/ortho/distance/.process={Ow{fork sep}{-##1}},
321 },
322 multi@edge@subpath={%
323 (.child anchor) -|-
324 },
325 multi@edge@sublast={%
326 (.child anchor) -|-
327 },
328 multi@edge@route={%
329 -|-
330 },
331 },

Setup some (hopefully) intuitive defaults.
A negative value for ext/ortho/distance is measured from the target coordinate rather than
the start. We are constructing the paths backwards in comparison with forest. 0.5em is the forest
default. Do not try passing the option value here!

332 ⟨!debug⟩ libraries/ext.multi/defaults/.style=
333 ⟨debug⟩ libraries/ext.multi-debug/defaults/.style=
334 {%
335 default preamble+={
336 Autoforward={fork sep}{%
337 every parent+={%
338 fork sep=##1,
339 edge+={/tikz/ext/ortho/distance=-##1},
340 },
341 edge+={/tikz/ext/ortho/distance=-##1},
342 },
343 fork sep'=0.5em,
344 forked edge'/.forward to=/forest/multi@forked@edge,
345 },
346 },

There’s no ‘hook’ mechanism for this, so there is not really a nice or robust way of doing this, I
don’t think. For the edges library, in particular, there are, in fact, no defaults at all

347 libraries/edges/defaults/.append style={%
348 ⟨!debug⟩ libraries/ext.multi/defaults,
349 ⟨debug⟩ libraries/ext.multi-debug/defaults,
350 /utils/exec={%
351 ⟨!debug⟩ \PackageInfo{forest-lib-ext.multi}
352 ⟨debug⟩ \PackageInfo{forest-lib-ext.multi-debug}
353 {%
354 Appending compatibility code for forked edges to default settings.%
355 }%
356 },
357 }%
358 }%
359 }%
360 }

</sty>

ext.tagging

Clea F. Rees∗

2026/01/17

<*sty> <@@=tagforest>

361 \NeedsTeXFormat{LaTeX2e}
362 %% $Id: forest-ext-tagging.dtx 11499 2026-01-17 00:49:37Z cfrees $}
363 ⟨!debug⟩ \ProvidesForestLibrary{ext.tagging}[v0.1]
364 ⟨debug⟩ \ProvidesForestLibrary{ext.tagging-debug}[v0.1]
365 %
366 ⟨!debug⟩ \disable@package@load {forest-lib-ext.tagging-debug}
367 ⟨debug⟩ \disable@package@load {forest-lib-ext.tagging}
368 {%
369 ⟨!debug⟩ \PackageWarning {ext.tagging (forest library)}
370 ⟨debug⟩ \PackageWarning {ext.tagging-debug (forest library)}
371 {Only one of ext.tagging and ext.tagging-debug should be loaded.
372 Since the
373 ⟨!debug⟩ ext.tagging
374 ⟨debug⟩ ext.tagging-debug
375 library has already been loaded, I will ignore your request for
376 ⟨!debug⟩ ext.tagging-debug.%
377 ⟨debug⟩ ext.tagging.%
378 }%
379 }

As the name suggests, we need tagging keylists from ext.utils.

380 ⟨!debug⟩ \useforestlibrary*{ext.utils}
381 ⟨debug⟩ \useforestlibrary*{ext.utils-debug}
382 \ExplSyntaxOn

\l__tagforest_toks_tl expl3 variable to store non-expl3 toks.

383 \tl_new:N \l__tagforest_toks_tl

\l__tagforest_tmpa_str

384 \str_new:N \l__tagforest_tmpa_str

\l_forestext_tagging_custom_bool
custom tagging (code key)

Public boolean to allow custom config to override e.g. prooftrees.

385 \bool_new:N \l_forestext_tagging_custom_bool
386 \bool_set_false:N \l_forestext_tagging_custom_bool
387 \forestset{
388 custom tagging/.code={
389 \use:c {bool_set_#1:N} \l_forestext_tagging_custom_bool
390 },
391 custom tagging/.default=true,

∗Bug tracker: codeberg.org/cfr/prooftrees/issues | Code: codeberg.org/cfr/prooftrees | Mirror: github.com/cfr42
/prooftrees

31

https://codeberg.org/cfr/prooftrees/issues
codeberg.org/cfr/prooftrees/issues
https://codeberg.org/cfr/prooftrees
codeberg.org/cfr/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees

forest-lib-ext.tagging 32 / 52

392 not custom tagging/.code={
393 \bool_set_false:N \l_forestext_tagging_custom_bool
394 },
395 }

__tagforest_pgftikz_tag_bbox:nnn
__tagforest_pgftikz_tag_bbox:enn

Retrieve saved coordinates.

396 \cs_new_nopar:Npn __tagforest_pgftikz_tag_bbox:nnn #1#2#3
397 {
398 __tagforest_pgftikz_tag_bbox_aux:eenn
399 {
400 \property_ref:ee {#1}{xpos}
401 }
402 {
403 \property_ref:ee {#1}{ypos}
404 }
405 {#2}{#3}
406 }
407 \cs_generate_variant:Nn __tagforest_pgftikz_tag_bbox:nnn {enn}

__tagforest_pgftikz_tag_bbox_aux:nnnn
__tagforest_pgftikz_tag_bbox_aux:eenn

The tagging code requires the bounding box for alt. Getting the exact value would require
something more complicated, but this calculates a reasonable approximation for simple cases. It
is not exact because it does not, for instance, account for line widths at the least and greatest
coordinates. A more serious deficiency is that it ignores any annotations added to the tree,
including labels, edge labels, additional drawing commands etc.
The problem here is that if we wait until the end of the tikzpicture, the tokens required to
create the alt text no longer exist. A better solution might be to memoize the tree and get the
bounding box that way. Then we can simply write the tokens we need to file and access them at
any point during subsequent compilations. Or maybe it would be better to just save the tokens
and write this after the tree is drawn? But then we probably have to save them globally in order
to ‘smuggle’ them out, which is a bit obnoxious.

408 \cs_new_nopar:Npn __tagforest_pgftikz_tag_bbox_aux:nnnn #1#2#3#4
409 {
410 \dim_to_decimal_in_bp:n {#1sp}
411 \c_space_tl
412 \dim_to_decimal_in_bp:n {#2sp}
413 \c_space_tl
414 \dim_to_decimal_in_bp:n {#1sp+#3}
415 \c_space_tl
416 \dim_to_decimal_in_bp:n {#2sp+#4}
417 }
418 \cs_generate_variant:Nn __tagforest_pgftikz_tag_bbox_aux:nnnn {eenn}

tagsupport/forest/init (socket)
tagsupport/forest/tag (socket)

tagsupport/forest/tag/mmz (socket)
tagsupport/forest/setup (socket)

Is there an equivalent of the macro environment for sockets/plugs/hooks?
The support for memoize is currently noop, but we create the sockets.
tagsupport/forest/setup doesn’t correspond to anything in latex-lab (LATEX Project 2025a)
because I’m not sure how to make it.

419 \socket_new:nn {tagsupport/forest/init}{0}
420 \socket_new:nn {tagsupport/forest/tag}{2}
421 \socket_new:nn {tagsupport/forest/tag/mmz}{2}
422 \socket_new:nn {tagsupport/forest/setup}{0}

__tagforest_tag_suspend:n
__tagforest_tag_resume:n

We are going to redefine the standard \tag_suspend:n and \tag_resume:n to prevent the
tagging code being continuously stopped and started during tree construction. Before doing that,
we make private copies of both commands so that we can (i) still stop/start tagging ourselves
and (ii) restore the original definitions when we’re done.

forest-lib-ext.tagging 33 / 52

This rather less than ideal solution is required because there is no way to disable the tagging
support for tikz locally: the only documented way to disable is global. But we do not want to
interfere with latex-lab’s tagging code for other tikzpicture environments. We just want to stop
it interfering in forest trees. Hence the hacks.

423 \cs_new_eq:NN __tagforest_tag_suspend:n \tag_suspend:n
424 \cs_new_eq:NN __tagforest_tag_resume:n \tag_resume:n

__tagforest_noop:n Something to \let the suspend/resume functions to.

425 \cs_new_nopar:Npn __tagforest_noop:n #1 {}

tagsupport/forest/inittag (plug) This plug corresponds roughly to tagsupport/tikz/picture/init, but the division of labour
between sockets/plugs is a bit different for forest.

426 \socket_new_plug:nnn {tagsupport/forest/init}{tag}
427 {

This part is modified from LATEX Project (2025b), but runs in a different socket. I had a note
that using socket para/begin didn’t work here. That’s probably from tableaux? But I can’t
remember what I thought the problem was

428 \mode_if_vertical:T
429 {
430 \if@inlabel
431 \mode_leave_vertical:
432 \else
433 \tag_socket_use:n {para/begin}
434 \fi
435 }
436 \tag_mc_end_push:

Note that assigning noop to all of the latex-lab sockets and suspending tagging is not sufficient to
suspend tagging. This is because hook code includes tagging commands, including commands
which start/stop tagging, unconditionally.

437 \socket_assign_plug:nn {tagsupport/tikz/picture/init}{noop}
438 \socket_assign_plug:nn {tagsupport/tikz/picture/begin}{noop}
439 \socket_assign_plug:nn {tagsupport/tikz/picture/end}{noop}

This does the forest (Živanović 2017) setup before the tagging keylists are turned into keylist

options.

440 \socket_use:n {tagsupport/forest/setup}

Since we can’t disable that code only locally, we instead redefine the relevant commands. Even
this does not completely pause the tagging code, but it stops enough to yield a valid structure,
albeit one with a lot of empty mcs.

441 \cs_set_eq:NN \tag_suspend:n __tagforest_noop:n
442 \cs_set_eq:NN \tag_resume:n __tagforest_noop:n

Suspend tagging using private copy of public function.

443 __tagforest_tag_suspend:n {tagforest}
444 }

tagsupport/forest/setup alt (plug) This doesn’t correspond to anything in LATEX Project (2025b) because I’m not sure how to make
it.

445 \socket_new_plug:nnn {tagsupport/forest/setup}{alt}
446 {
447 \forestset{

forest-lib-ext.tagging 34 / 52

448 tag plug=alt,
449 tag nodes uses=alt text,
450 collate tags uses=alt text,
451 tag tree uses=alt,
452 }
453 }

tagsupport/forest/tag alt (plug) This plug corresponds to latex-lab’s alt plug for tikz (LATEX Project 2025b). So far as possible,
these plugs are verbatim copies of the official plugs1, but some changes are necessary for forest.

454 \socket_new_plug:nnn {tagsupport/forest/tag}{alt}
455 {

Straight from latex-lab.

456 \tag_struct_begin:n
457 {
458 tag=Figure,
459 alt=\l__tagforest_toks_tl,
460 }
461 \tag_mc_begin:n {tag=Figure}
462 \cs_new:cpe {tagforest@mark@pos@\the\tagforest@id}
463 {

The only real differences are that, as noted above, some code is used in the init socket rather
than here and that we use different functions to determine the coordinates of the origin and size
of the bounding box. Whereas latex-lab uses pgf’s remember picture functionality to record
the origin, we use ltproperties. Similarly, where latex-lab uses pgf to determine the extent of the
bounding box, we use forest to calculate approximate dimensions for the tree before it is drawn.
The use of ltproperties is quite all right, I think, and necessary as latex-lab’s method is not
compatible with forest. However, latex-lab’s bounding box calculation is far superior to the
method used here, so it would be useful to see if that can be modified for use once the rest of the
code works. (It should also be significantly faster.)

464 __tagforest_pgftikz_tag_bbox:enn {tagforest-id\the\tagforest@id}
465 {#1}{#2}
466 }

Revert to copying latex-lab verbatim.

467 \tag_struct_gput:ene
468 {\tag_get:n {struct_num}}
469 {attribute}
470 {
471 /O /Layout /BBox
472 [
473 \use:c
474 {tagforest@mark@pos@\the\tagforest@id}
475]
476 }
477 }

__tagforest_init: Corresponds to the analogous latex-lab function. Tests whether tagging is active and sets a forest
boolean accordingly.

478 \cs_new_nopar:Npn __tagforest_init:
479 {
480 \global\advance\tagforest@id by 1\relax
481 \tag_if_active:TF

1In other words, the bits that work are shamelessly copied from Ulrike Fischer’s code, while the bits which

don’t are mine.

forest-lib-ext.tagging 35 / 52

482 {
483 \forestset{
484 tagging=1,
485 ⟨debug⟩ debug tagforest={Tagging active.},
486 }

If tagging is active and unless custom tagging is set, installs sets register plut to alt and assigns
plugs and sockets. If custom tagging is set, we just set the forest boolean tagging and make
__tagforest_end: noop. The custom stages are still in place, but these should hopefully have
no effect on anything. In any case, they are partially overridden by e.g. prooftrees which installs a
somewhat different and more complicated set.

487 \bool_if:NTF \l_forestext_tagging_custom_bool
488 {
489 ⟨debug⟩ \tagforest@debug@typeout{Custom tagging configured.}
490 \cs_set_eq:NN __tagforest_end: __tagforest_noop:n
491 }{
492 ⟨debug⟩ \tagforest@debug@typeout{Custom tagging not configured.}
493 \str_if_eq:eeT {tagforest@plug@NONE} {\foresteregister{setup plug}}
494 {
495 ⟨debug⟩ \tagforest@debug@typeout{Looking for setup plug as none configured.}
496 \socket_get_plug:nN {tagsupport/tikz/picture/begin} \l__tagforest_tmpa_str
497 \exp_args:NnV \socket_if_plug_exist:nnTF {tagsupport/forest/setup}
498 \l__tagforest_tmpa_str
499 {
500 \PackageInfo{ext.tagging (forest lib)}{
501 Installing setup plug for tagging forest trees to match selection for
502 tikz pictures.
503 }
504 \exp_args:Ne \forestset{setup plug \exp_not:N = \l__tagforest_tmpa_str}
505 } {
506 \PackageWarning{ext.tagging (forest lib)}{
507 Using alt setup plug for tagging as no match exists for plug
508 selected for tikz pictures
509 }
510 \forestset{setup plug=alt}
511 }
512 }
513 \str_if_eq:eeT {tagforest@plug@NONE} {\foresteregister{tag plug}}
514 {
515 ⟨debug⟩ \tagforest@debug@typeout{Looking for tag plug as none configured.}
516 \exp_args:NnV \socket_if_plug_exist:nnTF {tagsupport/forest/tag}
517 \l__tagforest_tmpa_str
518 {
519 \PackageInfo{ext.tagging (forest lib)}{
520 Installing tag plug for tagging forest trees to match selection for
521 tikz pictures.
522 }
523 \exp_args:Ne \forestset{tag plug \exp_not:N = \l__tagforest_tmpa_str}
524 } {
525 \PackageWarning{ext.tagging (forest lib)}{
526 Using alt tag plug for tagging as no match exists for plug
527 selected for tikz pictures
528 }
529 \forestset{tag plug=alt}
530 }
531 }
532 ⟨debug⟩ \tagforest@debug@typeout{Assigning plug tag to tagsupport/forest/init.}
533 \socket_assign_plug:nn {tagsupport/forest/init}{tag}
534 ⟨debug⟩ \tagforest@debug@typeout{Using socket tagsupport/forest/init.}
535 \socket_use:n {tagsupport/forest/init}

forest-lib-ext.tagging 36 / 52

We also do what we can to stop the residual tagging code from marking up useless content. This
mitigates the problem, but does not entirely solve it.

536 \def\pgfsys@begin@text{}
537 \def\pgfsys@end@text{}
538 }
539 }{
540 \forestset{tagging=0,
541 ⟨debug⟩ debug tagforest={Tagging inactive.},
542 }
543 }
544 }

__tagforest_end: Again, analogous to the corresponding latex-lab function (LATEX Project 2025b).

545 \cs_new_nopar:Npn __tagforest_end: {
546 __tagforest_tag_resume:n {tagforest}

Restore the format’s definitions of \tag_suspend:n and \tag_resume:n.

547 \cs_set_eq:NN \tag_suspend:n __tagforest_tag_suspend:n
548 \cs_set_eq:NN \tag_resume:n __tagforest_tag_resume:n

Standardish?

549 ⟨debug⟩ \if@tagforest@debug
550 ⟨debug⟩ \ShowTagging{mc-current}
551 ⟨debug⟩ \fi
552 \tag_mc_end:
553 \tag_struct_end:
554 \tag_mc_begin_pop:n {}
555 }

__tagforest_tag_tree_tag:nnn
\tagforest@tag@tree@tag

This function is responsible for recording the tree’s page coordinates, tidying up the collected
tokens for the alt text and utilising the tagging socket.

556 \cs_new_nopar:Npn __tagforest_tag_tree_tag:nnn #1#2#3
557 {
558 \tex_savepos:D
559 \property_record:ee {tagforest-id\the\tagforest@id}
560 {xpos,ypos}
561 \tex_savepos:D
562 \tl_set:Ne \l__tagforest_toks_tl {
563 \exp_args:No \text_purify:n { \the\tagforest@toks }
564 }

Utilising the socket requires briefly reenabling tagging else the commands would have no useful
effects.

565 __tagforest_tag_resume:n {tagforest}
566 \socket_assign_plug:nn {tagsupport/forest/tag}{#1}
567 \ifmemoizing
568 \socket_assign_plug:nn {tagsupport/forest/tag/mmz}{#1}
569 \fi
570 \socket_use:nnn {tagsupport/forest/tag}{#2}{#3}
571 \socket_use:nnn {tagsupport/forest/tag/mmz}{#2}{#3}
572 __tagforest_tag_suspend:n {tagforest}
573 }

Alias for use in pgf syntax.

574 \cs_new_eq:NN \tagforest@tag@tree@tag __tagforest_tag_tree_tag:nnn

forest-lib-ext.tagging 37 / 52

\tagforest@init Alias.

575 \cs_new_eq:NN \tagforest@init __tagforest_init:

\tagforest@end Alias.

576 \cs_new_eq:NN \tagforest@end __tagforest_end:

577 \hook_gput_code:nnn {env/forest/end}{.}
578 {
579 __tagforest_end:
580 }
581 \hook_gput_code:nnn {env/forest/begin}{.}
582 {
583 __tagforest_init:
584 }

585 \ExplSyntaxOff

\tagforest@toks
\LogTagForestToks

Name for a new toks and some ways to peek when debugging.

586 \newtoks\tagforest@toks
587 ⟨debug⟩ \newcommand \LogTagForestToks{%
588 ⟨debug⟩ \expandafter\typeout\expanded{[tagforest debug]:: current id:
589 ⟨debug⟩ \expandafter\noexpand\the\tagforest@toks}%
590 ⟨debug⟩ }

\tagforest@id
\LogTagForestId

Name for a new count.

591 \newcount\tagforest@id
592 ⟨debug⟩ \newcommand \LogTagForestId{%
593 ⟨debug⟩ \expandafter\typeout\expanded{[tagforest debug]::
594 ⟨debug⟩ current id: \the\tagforest@id}%
595 ⟨debug⟩ }

\if@tagforest@debug
\@tagforest@debugfalse
\@tagforest@debugtrue

\tagforest@debug@typeout

Conditional for debugging.

596 \newif\if@tagforest@debug
597 ⟨!debug⟩ \@tagforest@debugfalse
598 ⟨debug⟩ \@tagforest@debugtrue
599 \newcommand \tagforest@debug@typeout [1]{%
600 \if@tagforest@debug
601 \ExpandArgs {e} \typeout{[tagforest debug]:: \detokenize{#1}}%
602 \fi
603 }

604 \forestset{

For debugging. <*debug>

605 debug tagforest/.code={
606 \tagforest@debug@typeout{#1}%
607 },

</debug> Various additions in the form of forest options and registers. By default, these are
noop.

608 declare boolean register={tagging},
609 tagging=0,
610 declare toks register={setup plug},
611 setup plug=tagforest@plug@NONE,
612 declare toks register={tag plug},

forest-lib-ext.tagging 38 / 52

613 tag plug=tagforest@plug@NONE,
614 Autoforward register={setup plug}{%
615 TeX={%
616 \IfSocketPlugExistsTF {tagsupport/forest/setup}{#1}{%
617 \AssignSocketPlug {tagsupport/forest/setup}{#1}%
618 }{%
619 \PackageError{ext.tagging (forest library)}{%
620 No plug named '#1' exists for socket 'tagsupport/forest/setup'.%
621 }{%
622 See the forest-ext manual for details.%
623 }%
624 }%
625 },
626 },
627 Autoforward register={tag plug}{%
628 TeX={%
629 \IfSocketPlugExistsTF {tagsupport/forest/tag}{#1}{%
630 \AssignSocketPlug {tagsupport/forest/tag}{#1}%
631 }{%
632 \PackageError{ext.tagging (forest library)}{%
633 No plug named '#1' exists for socket 'tagsupport/forest/tag'.%
634 }{%
635 See the forest-ext manual for details.%
636 }%
637 }%
638 },
639 },
640 plug/.style={%
641 setup plug={#1},
642 tag plug={#1},
643 },

tag nodes (tag. keylist)
collate tags (tag. keylist)

I wanted to use a nodewalk styles for tagging and collation, but couldn’t (easily) figure out how,
so sticking to keylists and processing orders for now. Hence, only the final step is a stage
But I suspect there’s a performance hit here (Or maybe not without comparing internals
with public interfaces? prooftrees uses keylists and I don’t think Sašo suggested substituting code
keys for speed at any point? But that was a long time ago)

644 declare tagging keylist={tag nodes}{},
645 declare tagging keylist={collate tags}{},

before tagging nodes (keylist)
before collating tags (keylist)
before tagging tree (keylist)

Regular keylist options.

646 declare keylist={before tagging nodes}{},
647 declare keylist={before collating tags}{},
648 declare keylist={before tagging tree}{},

node@ttoks (auto. toks)
alttext (auto. toks)

Private and public.

649 declare autowrapped toks={node@ttoks}{},
650 declare autowrapped toks={alt text}{},

is root (auto. toks reg.)
is leaf (auto. toks reg.)

is child (auto. toks reg.)
is edge label (auto. toks reg.)
has branches (auto. toks reg.)

is branch (auto. toks reg.)

Structural descriptors.

651 declare autowrapped toks register={is root},
652 is root={root},
653 declare autowrapped toks register={is leaf},
654 is leaf={end branch},
655 declare autowrapped toks register={is child},
656 is child={child},
657 declare autowrapped toks register={is edge label},

forest-lib-ext.tagging 39 / 52

658 is edge label={edge label},
659 declare autowrapped toks register={has branches},
660 has branches={branches},
661 declare autowrapped toks register={is branch},
662 is branch={branch},

The tagging code depends on injecting additional processing steps into forest’s processing of
the tree. This requires redefining stages to include the extra steps. This has global effect, but
hopefully does no harm

663 stages/.style={
664 for root'={
665 process keylist register=default preamble,
666 process keylist register=preamble
667 },
668 process keylist=given options,
669 process keylist=before typesetting nodes,
670 typeset nodes stage,
671 process keylist=before packing,
672 pack stage,
673 process keylist=before computing xy,
674 compute xy stage,

The additions for tagging are inserted between compute xy stage and before drawing tree.

675 ⟨debug⟩ debug tagforest={Process keylist: before tagging nodes ...},
676 process keylist=before tagging nodes,
677 ⟨debug⟩ debug tagforest={Process keylist: tag nodes ...},
678 process keylist=tag nodes,
679 ⟨debug⟩ debug tagforest={Process keylist: before collating tags ...},
680 process keylist=before collating tags,
681 ⟨debug⟩ debug tagforest={Process keylist: collate tags ...},
682 process keylist=collate tags,
683 ⟨debug⟩ debug tagforest={Process keylist: before tagging tree ...},
684 process keylist=before tagging tree,
685 ⟨debug⟩ debug tagforest={Stage: tag tree stage ...},
686 tag tree stage,
687 ⟨debug⟩ debug tagforest={Completed all tagging stages!},
688 process keylist=before drawing tree,
689 draw tree stage
690 },
691 tag nodes processing order/.nodewalk style={unique=tree},
692 collate tags processing order={unique=tree depth first},
693 tag tree stage/.style={for root'=tag tree},

By default, the crucial stage does nothing.

694 tag tree/.style={},

Redefine various of the additions to stages to do something useful. The remaining additions are
to allow user interventions.
We split this up so bits can be used more flexibly e.g. by prooftrees. prooftrees doesn’t want the
code which generates tags, but it does want tag tree. (Well, prooftrees had this code first, so it
wants what ext.tagging is pinching.

tag nodes uses (choice) How to tag individual nodes. Currently, only nodes can be tagged.

695 tag nodes uses/.is choice,
696 tag nodes uses/noop/.style={%
697 redeclare tagging keylist={tag nodes}{},
698 },
699 tag nodes uses/alt text/.style={%

forest-lib-ext.tagging 40 / 52

700 redeclare tagging keylist={tag nodes}{%
701 delay={%
702 if level=0{%
703 if alt text={}{%
704 +node@ttoks/.process={Rw{is root}{##1\ }},
705 }{},
706 }{},
707 },
708 if phantom={}{%
709 if alt text={}{%
710 if edge label={}{%
711 ⟨debug⟩ debug tagforest/.process={Ow {id}{Node id: ##1}},
712 ⟨debug⟩ debug tagforest/.process={Ow{content}{No edge label.
713 ⟨debug⟩ Content is ##1}},
714 node@ttoks/.process={Ow{content}{##1}},
715 }{%
716 ⟨debug⟩ debug tagforest/.process={Ow {id}{Node id: ##1}},
717 ⟨debug⟩ debug tagforest/.process={Ow{edge label}{Edge label is ##1}},
718 ⟨debug⟩ debug tagforest/.process={Ow{content}{Content is ##1}},
719 node@ttoks/.process={ROOw3{is edge label}{content}{edge label}{\ ##1 ##2 ##3\

}},
720 },
721 if={>O_>{n children}{1}}{%
722 ⟨debug⟩ debug tagforest/.process={OOw2 {id}{n children}{Node id: ##1 has ##2 branches}},
723 node@ttoks+/.process={ORw2{n children}{has branches}{\ ##1 ##2\ }},
724 delay={%
725 for children={%
726 ⟨debug⟩ debug tagforest/.process={Ow {id}{Node id: ##1}},
727 ⟨debug⟩ debug tagforest/.process={Ow{n}{Branch no. is ##1}},
728 +node@ttoks/.process={ROw2{is branch}{n}{\ ##1 ##2\ }},
729 },
730 },
731 }{%
732 if n children=1{%
733 delay={%
734 ⟨debug⟩ debug tagforest/.process={Ow {id}{Node id: ##1 has 1 child}},
735 !1.+node@ttoks/.process={Rw{is child}{\ ##1\ }},
736 },
737 }{%
738 ⟨debug⟩ debug tagforest/.process={Ow {id}{Node id: ##1 is a leaf}},
739 node@ttoks+/.process={Rw{is leaf}{\ ##1\ }},
740 },
741 },
742 delay n=2{%
743 alt text'/.option=node@ttoks,
744 },
745 }{},
746 },
747 },
748 },

collate tags uses (choice) I don’t really like this way of doing this. I’d rather use e.g. a .choice key or something for
collate tags, but I’m not sure how to do that and have the keylist be public

749 collate tags uses/.is choice,
750 collate tags uses/noop/.style={%
751 redeclare tagging keylist={collate tags}{},
752 },
753 collate tags uses/alt text/.style={%
754 redeclare tagging keylist={collate tags}{%
755 collate tag/.option=alt text,

forest-lib-ext.tagging 41 / 52

756 },
757 },

collate tag (code key) How to collate the tags.

758 collate tag/.code={%
759 ⟨debug⟩ \tagforest@debug@typeout{Appending toks #1 .}%
760 \forestext@toksapp\tagforest@toks{#1 }%
761 },

tag tree uses (choice) Calculate dimensions used to determine an approximate bounding box size.

762 tag tree uses/.is choice,
763 tag tree uses/noop/.style={%
764 tag tree/.style={},
765 },
766 tag tree uses/alt/.style={% wrong bbox!!
767 tag tree/.style={%
768 tempdimc/.max={>OOw2+d{x}{max x}{####1+####2}}{tree},
769 tempdimc-/.min={>OOw2+d{x}{min x}{####1+####2}}{tree},
770 tempdimd/.max={>OOw2+d{y}{max y}{####1+####2}}{tree},
771 tempdimd-/.min={>OOw2+d{y}{min y}{####1+####2}}{tree},
772 ⟨debug⟩ debug tagforest={Dimensions (x then y) are },
773 ⟨debug⟩ debug tagforest/.register=tempdimc,
774 ⟨debug⟩ debug tagforest/.register=tempdimd,

The next line should create the tagging structure and insert the assembled alt text.

775 ⟨debug⟩ debug tagforest/.process={RRRw3{tag plug}{tempdimc}{tempdimd}{%
776 ⟨debug⟩ Tagging tree now with tag plug=####1, x=####2, y=####3 ...}},
777 TeX/.process={RRRw3{tag plug}{tempdimc}{tempdimd}{%
778 \tagforest@tag@tree@tag{####1}{####2}{####3}}%
779 },
780 },
781 },

782 }

</sty>

ext.utils

Clea F. Rees∗

2026/01/17

<*sty> <@@=forestext>

783 \NeedsTeXFormat{LaTeX2e}
784 %% $Id: forest-ext-utils.dtx 11499 2026-01-17 00:49:37Z cfrees $}
785 ⟨!debug⟩ \ProvidesForestLibrary{ext.utils}[2025-12-05 v0.1]
786 ⟨debug⟩ \ProvidesForestLibrary{ext.utils-debug}[2025-12-05 v0.1]
787 %
788 ⟨!debug⟩ \disable@package@load {forest-lib-ext.utils-debug}
789 ⟨debug⟩ \disable@package@load {forest-lib-ext.utils}
790 {%
791 ⟨!debug⟩ \PackageWarning {ext.utils (forest library)}
792 ⟨debug⟩ \PackageWarning {ext.utils-debug (forest library)}
793 {Only one of ext.utils and ext.utils-debug should be loaded.
794 Since the
795 ⟨!debug⟩ ext.utils
796 ⟨debug⟩ ext.utils-debug
797 library has already been loaded, I will ignore your request for
798 ⟨!debug⟩ ext.utils-debug.%
799 ⟨debug⟩ ext.utils.%
800 }%
801 }

7 Toks etc.

Only used if other stuff isn’t loaded.

802 \ExplSyntaxOn

\forestext@toksapp Avoid standard name in case the user loads code which defines the macro after loading our
package.

803 \cs_new:Npn \forestext@toksapp#1#2{#1\expandafter{\the #1#2}}
804 \@ifpackageloaded{memoize}
805 {}{
806 \newif\ifmemoizing\memoizingfalse
807 }

\socket_get_plug:nN See https://github.com/latex3/latex2e/issues/1851#issuecomment-3566374363. I don’t know the
implementation status of Ulrike Fischer’s suggestion.

808 \cs_if_free:NT \socket_get_plug:nN
809 {
810 \cs_new_protected_nopar:Npn \socket_get_plug:nN #1#2
811 {

∗Bug tracker: codeberg.org/cfr/prooftrees/issues | Code: codeberg.org/cfr/prooftrees | Mirror: github.com/cfr42
/prooftrees

42

https://github.com/latex3/latex2e/issues/1851#issuecomment-3566374363
https://codeberg.org/cfr/prooftrees/issues
codeberg.org/cfr/prooftrees/issues
https://codeberg.org/cfr/prooftrees
codeberg.org/cfr/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees

forest-lib-ext.utils 43 / 52

812 \str_set_eq:cN { l__socket_#1_plug_str } #2
813 }
814 }

8 ‘Tagging keylists’

A bit like expl3 property lists outside forest environments; just like forest keylist options inside
them.
Mostly intended for tagging, but possibly useful in some other context so here. Sylwad jps:
https://chat.stackexchange.com/transcript/message/68670752#68670752.

815 \ExplSyntaxOn
816 \tl_new:N \l__forestext_tmpa_tl
817 \prop_new:N \l__forestext_tmpa_prop
818 \seq_new:N \l__forestext_tmpa_seq

__forestext_fkeylist_declare:nn Wrapper.

819 \cs_new_protected_nopar:Npn __forestext_fkeylist_declare:nn #1#2
820 {
821 ⟨debug⟩ \typeout{[Forest ext.utils debug]:: Declare #1 with #2.}
822 \prop_new:c {l__forestext_#1_prop}
823 __forestext_fkeylist_put_from_keyval:nn {#1}{#2}
824 ⟨debug⟩ __forestext_fkeylist_log:n {#1}
825 }

__forestext_fkeylist_redeclare:nn This one is the point, after all. That is, it is here that forest (Živanović 2017) seems to lack
capacity (as far as I can tell).

826 \cs_new_protected_nopar:Npn __forestext_fkeylist_redeclare:nn #1#2
827 {
828 ⟨debug⟩ \typeout{[Forest ext.utils debug]:: Redeclare #1 with #2.}
829 \prop_clear:c {l__forestext_#1_prop}
830 __forestext_fkeylist_put_from_keyval:nn {#1} {#2}
831 ⟨debug⟩ __forestext_fkeylist_log:n {#1}
832 }

__forestext_fkeylist_put_from_keyval:nn This is ugly as sin, but l3prop does not like keys without values.
jps: <- ‘we’ll need two steps of full expansion’ I don’t understand this at all.
jps: https://chat.stackexchange.com/transcript/message/68672267#68672267 ‘\exp_args:Nne
\prop_set_from_keyval:ce will in combination expand the entire thing two times inside an
e-argument, hence two steps of full expansion. It’s necessary because \keyval_parse:nnn returns
its result inside \exp_not:n, but we want to also expand all the auxiliary functions, hence two
steps.’

833 \cs_new_protected_nopar:Npn __forestext_fkeylist_put_from_keyval:nn #1#2
834 {
835 ⟨debug⟩ \typeout{[Forest ext.utils debug]:: Processing #2 for #1.}
836 \exp_args:Nne \prop_put_from_keyval:ce {l__forestext_#1_prop}
837 {
838 \keyval_parse:NNn
839 __forestext_fkeylist_put_from_keyval_aux:n
840 __forestext_fkeylist_put_from_keyval_aux:nn
841 {#2}
842 }
843 }

https://chat.stackexchange.com/transcript/message/68670752#68670752
https://chat.stackexchange.com/transcript/message/68672267#68672267

forest-lib-ext.utils 44 / 52

__forestext_fkeylist_put_from_keyval_aux:n
__forestext_fkeylist_put_from_keyval_aux:nn

jps. I would never have thought to do it this way?

844 \cs_new_nopar:Npn __forestext_fkeylist_put_from_keyval_aux:n #1
845 {
846 __forestext_fkeylist_put_from_keyval_aux:nn {#1} {\q_no_value}
847 }
848 \cs_new_nopar:Npn __forestext_fkeylist_put_from_keyval_aux:nn #1#2
849 {
850 \exp_not:n { {#1} = {#2} },
851 }

__forestext_fkeylist_tokeyval:n Wrapper.

852 \cs_new_nopar:Npn __forestext_fkeylist_to_keyval:n #1
853 {
854 \prop_map_function:cN {l__forestext_#1_prop} __forestext_fkeylist_to_keyval_aux:nn
855 }

__forestext_fkeylist_to_keyval_aux:nn Ugly as sin in reverse.

856 \cs_new_nopar:Npn __forestext_fkeylist_to_keyval_aux:nn #1#2
857 {
858 \str_if_eq:nnTF {\q_no_value} {#2}
859 {\exp_not:n{#1},}{\exp_not:n{#1}=\exp_not:n{{#2}},}
860 }

__forestext_fkeylist_put:nn Wrapper.

861 \cs_new_protected_nopar:Npn __forestext_fkeylist_put:nn #1#2
862 {
863 __forestext_fkeylist_put_from_keyval:nn {#1} {#2}
864 ⟨debug⟩ __forestext_fkeylist_log:n {#1}
865 }

__forestext_fkeylist_remove:nn ‘«< Unconditionally remove a key.

866 \cs_new_protected_nopar:Npn __forestext_fkeylist_remove:nn #1#2
867 {
868 \prop_remove:cn {l__forestext_#1_prop} {#2}
869 ⟨debug⟩ __forestext_fkeylist_log:n {#1}
870 }

__forestext_fkeylist_remove_if_match:nn Conditional removal.

871 \cs_new_protected_nopar:Npn __forestext_fkeylist_remove_if_match:nn #1#2
872 {
873 ⟨debug⟩ \typeout{[Forest ext.utils debug]:: Remove #2 from #1 if value match.}
874 \prop_set_eq:Nc \l__forestext_tmpa_prop {l__forestext_#1_prop}
875 \keyval_parse:NNn
876 __forestext_fkeylist_remove_from_keyval_aux:n
877 __forestext_fkeylist_remove_from_keyval_aux:nn
878 {#2}
879 \prop_set_eq:cN {l__forestext_#1_prop} \l__forestext_tmpa_prop
880 ⟨debug⟩ __forestext_fkeylist_log:n {#1}
881 }

__forestext_fkeylist_remove_from_keyval_aux:n
__forestext_fkeylist_remove_from_keyval_aux:nn

Auxiliaries.

882 \cs_new_protected_nopar:Npn __forestext_fkeylist_remove_from_keyval_aux:n #1
883 {
884 __forestext_fkeylist_remove_from_keyval_aux:nn {#1} {\q_no_value}

forest-lib-ext.utils 45 / 52

885 }
886 \cs_new_protected_nopar:Npn __forestext_fkeylist_remove_from_keyval_aux:nn #1#2
887 {
888 ⟨debug⟩ \typeout{[Forest ext.utils debug]:: Remove #1 if value is #2.}
889 \prop_get:NnN \l__forestext_tmpa_prop {#1} \l__forestext_tmpa_tl
890 \tl_if_eq:NnT \l__forestext_tmpa_tl {#2}
891 {
892 \prop_remove:Nn \l__forestext_tmpa_prop {#1}
893 }
894 }

\forestext@keylist@declare
\forestext@prop@to@keylist

\forestext@keylist@put
\forestext@keylist@remove@key

\forestext@keylist@remove
\forestext@keylist@redeclare

2e aliases.

895 \cs_new_eq:NN \forestext@keylist@declare __forestext_fkeylist_declare:nn
896 \cs_new_eq:NN \forestext@prop@to@keylist __forestext_fkeylist_to_keyval:n
897 \cs_new_eq:NN \forestext@keylist@put __forestext_fkeylist_put:nn
898 \cs_new_eq:NN \forestext@keylist@remove@key __forestext_fkeylist_remove:nn
899 \cs_new_eq:NN \forestext@keylist@remove __forestext_fkeylist_remove_if_match:nn
900 \cs_new_eq:NN \forestext@keylist@redeclare __forestext_fkeylist_redeclare:nn

__forestext_fkeylist_protected_show:n
\forestext@keylist@log

901 ⟨debug⟩ \cs_new_nopar:Npn __forestext_fkeylist_log:n #1
902 ⟨debug⟩ {
903 ⟨debug⟩ \typeout{[tagforext debug]:: #1: }
904 ⟨debug⟩ \prop_log:c {l__forestext_#1_prop}
905 ⟨debug⟩ }
906 ⟨debug⟩ \cs_new_eq:NN \forestext@keylist@log __forestext_fkeylist_log:n

907 \cs_generate_variant:Nn \prop_to_keyval:N {c}
908 \cs_generate_variant:Nn \prop_put_from_keyval:Nn {ce}
909 \ExplSyntaxOff
910 \newtoks\forestext@toksa

Avoid using a hook.

911 \forestset{%

forestext utils debug (style) Debugging.

912 forestext utils debug/.style={%
913 typeout={[Forest ext.utils debug]:: #1},
914 },

declare tagging keylist (code key)
redeclare tagging keylist (code key)

Wrappers for primary functionality of these bits.

915 declare tagging keylist/.code 2 args={%
916 ⟨debug⟩ \typeout{[Forest ext.utils debug]:: Declaring tagging keylist #1}%
917 ⟨debug⟩ \typeout{[Forest ext.utils debug]:: with default #2.}%
918 \forestext@keylist@declare {#1}{#2}%
919 ⟨debug⟩ \forestext@keylist@log{#1}%
920 \forestext@toksapp\forestext@toksa{%
921 declare keylist/.process={_x{#1}{\forestext@prop@to@keylist{#1}}},
922 }%
923 ⟨debug⟩ \expandafter\typeout\expandafter{\the\forestext@toksa}%
924 \pgfqkeys{/forest}{%
925 forestext utils debug={Setting processing order for #1 to unique=tree.},
926 #1 processing order/.nodewalk style={unique=tree},
927 }%
928 },
929 redeclare tagging keylist/.code 2 args={%
930 ⟨debug⟩ \typeout{[Forest ext.utils debug]:: Redeclaring tagging keylist #1}%

forest-lib-ext.utils 46 / 52

931 ⟨debug⟩ \typeout{[Forest ext.utils debug]:: with default #2.}%
932 \forestext@keylist@redeclare {#1}{#2}%
933 ⟨debug⟩ \forestext@keylist@log{#1}%
934 },

tagging keylist put (code key)
tagging keylist remove key (code key)

tagging keylist remove (code key)

Wrappers for manipulating these keylists.

935 tagging keylist put/.code 2 args={%
936 \forestext@keylist@put {#1}{#2}%
937 },
938 tagging keylist remove key/.code 2 args={%
939 \forestext@keylist@remove@key {#1}{#2}%
940 },
941 tagging keylist remove/.code 2 args={%
942 \forestext@keylist@remove {#1}{#2}%
943 },

944 }

Declare ‘tagging keylist’ options so we get defaults applied to nodes. Then zap all the user-facing
keys used to manipulate them.
We want this to happen really early, but we do need the group or there’s no point.

945 \AddToHook{cmd/forest@config/before}[.]{%
946 ⟨debug⟩ \typeout{[Forest ext.utils debug]:: Creating options set with declare tagging

keylist.}%
947 ⟨debug⟩ \expandafter\typeout\expandafter{\the\forestext@toksa}%
948 \expandafter\forestset\expandafter{\the\forestext@toksa}%
949 \forestset{%
950 tagging keylist error/.code={%
951 \PackageError{ext.tagging (forest library)}{%
952 The key '#1' cannot be used inside a forest environment.%
953 }{%
954 You need to use this key inside the document but outside the forest.
955 Please see forest-ext's documentation for details.%
956 }%
957 },
958 declare tagging keylist/.style 2 args={%
959 tagging keylist error=declare tagging keylist},
960 redeclare tagging keylist/.style 2 args={%
961 tagging keylist error=redeclare tagging keylist},
962 tagging keylist put/.style 2 args={%
963 tagging keylist error=tagging keylist put},
964 tagging keylist remove/.style 2 args={%
965 tagging keylist error=tagging keylist remove},
966 tagging keylist remove key/.style 2 args={%
967 tagging keylist error=tagging keylist remove key},
968 }%
969 }

9 Styles

970 \forestset{

align middle child (style)
align middle children (style)

Based on TEX se answer: 436985. Based on TEX se question 436881 by A. D.

971 align middle child/.style={
972 before typesetting nodes={
973 if={
974 > Ow+P {n children}{isodd(##1)}

https://tex.stackexchange.com/a/436985
https://tex.stackexchange.com/q/436881

forest-lib-ext.utils 47 / 52

975 }{
976 calign child/.process={
977 Ow+n {n children}{(##1+1)/2}
978 },
979 calign=#1,
980 }{},
981 },
982 },
983 align middle child/.default=child edge,
984 align middle children/.style={
985 for tree={align middle child=#1},
986 },
987 align middle children/.default=child edge,

utils@outer@label@opts (keylist) Options.

988 declare keylist={utils@outer@label@opts}{},

outer labels (keylist reg.) Keys applied to all outer labels.

989 declare keylist register={outer labels},
990 outer labels={anchor=base west},

utils@has@outer@labels (bool. reg.) Boolean.

991 declare boolean register=utils@has@outer@labels,
992 utils@has@outer@labels=0,

outer labels at (toks reg.) Anchor.

993 declare toks register=outer labels at,
994 outer labels at=east,

utils@outer@label (auto. toks) Label.

995 declare autowrapped toks={utils@outer@label}{},

996 /forest/ext/utils/outer@label/anchor/.initial=base,
997 /forest/ext/utils/outer@label/anchor/.forward to=/tikz/anchor,
998 /forest/ext/utils/outer@label/.search also={/tikz,/pgf},

outer label (style) Args: options, content

999 outer label/.style={%
1000 split={#1}{:}{utils@outer@label,utils@outer@label@opts},
1001 if utils@has@outer@labels={}{%
1002 utils@has@outer@labels,
1003 for root={%
1004 tikz+={%
1005 \coordinate (utils@outer@labels@align) at
1006 (current bounding box.\foresteregister{outer labels at});
1007 },
1008 before drawing tree={%
1009 where utils@outer@label={}{}{%
1010 tikz+/.process={%
1011 OOORw4
1012 {utils@outer@label}
1013 {utils@outer@label@opts}
1014 {!u.grow}
1015 {outer labels}
1016 {%

forest-lib-ext.multi 48 / 52

1017 \path [%
1018 rotate=##3,
1019] node [%
1020 ##4,
1021 /forest/ext/utils/outer@label/.cd,
1022 ##2,
1023] at (.\pgfkeysvalueof{/forest/ext/utils/outer@label/anchor}
1024 |- utils@outer@labels@align)
1025 {##1};
1026 }%
1027 },
1028 },
1029 },
1030 },
1031 },
1032 },

1033 ⟨!debug⟩ libraries/ext.utils/defaults/.style=
1034 ⟨debug⟩ libraries/ext.utils-debug/defaults/.style=
1035 {}%
1036 }

</sty>

forest-lib-ext.multi 49 / 52

References

Fischer, Ulrike (2025). The tagpdf Package. v0.99w. 31st Oct. 2025. ctan: tagpdf.
International Organization for Standardization (2025). Document management applications — Electronic

document file format enhancement for accessibility —Part 2: Use of iso 32000-2 (pdf/ua-2). 5th Apr.
2025.

pdf Association (2024a). iso 32000-2:2020 (pdf 2.0) including Errata Collection 2. 24th Sept. 2024.
— (2024b). Well-Tagged pdf (wtpdf) Using Tagged pdf for Accessibility and Reuse in pdf 2.0. 28th Feb.

2024.
LATEX Project (2025a). latex-lab. 2025-11-01a. 1st Nov. 2025. ctan: latex-lab.
— (2025b). The latex-lab-tikz Package: Support for the Tagging of TikZ Pictures. v0.80d. 27th Sept. 2025.

ctan: latex-lab.
Rees, Clea F. (2026). prooftrees. 0.9.2. 16th Jan. 2026. ctan: prooftrees.
Živanović, Sašo (2017). Forest: A PGF/TikZ-Based Package for Drawing Linguistic Trees. 2.1.5. 14th July

2017. ctan: forest.

Change History

v0.1
General: First public release. 1

Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined
refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

Symbols
+also parent (style) . 15, 226
\@ifpackageloaded . 804
\@tagforest@debugfalse 596
\@tagforest@debugtrue 596
\␣ 704, 719, 723, 728, 735, 739
__forestext_fkeylist_declare:nn 819, 895
__forestext_fkeylist_log:n

. 824, 831, 864, 869, 880, 901, 906
__forestext_fkeylist_protected_show:n 901
__forestext_fkeylist_put:nn 861, 897
__forestext_fkeylist_put_from_keyval:nn

. 823, 830, 833, 863
__forestext_fkeylist_put_from_keyval_aux:n .

. 839, 844
__forestext_fkeylist_put_from_keyval_aux:nn .

. 840, 844
__forestext_fkeylist_redeclare:nn 826, 900
__forestext_fkeylist_remove:nn 866, 898
__forestext_fkeylist_remove_from_keyval_aux:n

. 876, 882
__forestext_fkeylist_remove_from_keyval_aux:nn

. 877, 882
__forestext_fkeylist_remove_if_match:nn 871, 899
__forestext_fkeylist_to_keyval:n 852, 896
__forestext_fkeylist_to_keyval_aux:nn . . 854, 856
__forestext_fkeylist_tokeyval:n 852
__tagforest_end: 490, 545, 576, 579

__tagforest_init: 478, 575, 583
__tagforest_noop:n 425, 441, 442, 490
__tagforest_pgftikz_tag_bbox:enn 396, 464
__tagforest_pgftikz_tag_bbox:nnn 396
__tagforest_pgftikz_tag_bbox_aux:eenn . . 398, 408
__tagforest_pgftikz_tag_bbox_aux:nnnn 408
__tagforest_tag_resume:n 423, 546, 548, 565
__tagforest_tag_suspend:n 423, 443, 547, 572
__tagforest_tag_tree_tag:nnn 556

A
add parent (style) . 275
\AddToHook . 308, 945
\advance . 480
align middle child (style) 18, 971
align middle children (style) 18, 971
also parent (style) . 15, 226
also parent+ (style) . 15, 226
alt text (autowrapped toks) 4

alttext (autowrapped toks) 649
\AssignSocketPlug . 617, 630
autowrapped toks registers:

has branches . 5, 651
is branch . 5, 651
is child . 5, 651
is edge label . 5, 651
is leaf . 5, 651

https://www.ctan.org/pkg/tagpdf
https://www.ctan.org/pkg/latex-lab
https://www.ctan.org/pkg/latex-lab
https://www.ctan.org/pkg/prooftrees
https://www.ctan.org/pkg/forest

forest-lib-ext.multi 50 / 52

is root . 5, 651
autowrapped toks:

alt text . 4

alttext . 649
node@ttoks . 649
utils@outer@label . 995

B
before collating tags (keylist) 4, 646
before tagging nodes (keylist) 4, 646
before tagging tree (keylist) 4, 646
\begin . 154, 158
\bool_if:NTF . 487
\bool_new:N . 385
\bool_set_false:N 386, 393
boolean registers:

debug multi phantoms 15

not debug multi phantoms 15

tagging . 5

utils@has@outer@labels 991

C
c foster parent (step) 15, 77
c fosterling (step) . 15, 77
\c_space_tl . 411, 413, 415
choice keys:

collate tags uses 5, 749
tag nodes uses . 5, 695
tag tree uses . 5, 762

code keys:
collate tag . 758
custom tagging . 7, 385
declare tagging keylist 915
declare tagging keylist,redeclare tagging

keylist . 20

not custom tagging . 7

redeclare tagging keylist 915
tagging keylist put 21, 935
tagging keylist remove 21, 935
tagging keylist remove key 21, 935

collate tag (code key) 758
collate tags (tagging keylist) 4, 644
collate tags uses (choice key) 5, 749
\coordinate . 1005
\cs_generate_variant:Nn 407, 418, 907, 908
\cs_if_free:NT . 808
\cs_new:cpe . 462
\cs_new:Npn . 803
\cs_new_eq:NN . 423, 424,

574, 575, 576, 895, 896, 897, 898, 899, 900, 906
\cs_new_nopar:Npn . 396,

408, 425, 478, 545, 556, 844, 848, 852, 856, 901
\cs_new_protected_nopar:Npn

. . . 810, 819, 826, 833, 861, 866, 871, 882, 886
\cs_set_eq:NN 441, 442, 490, 547, 548
custom tagging (code key) 7, 385

D
debug multi phantoms (bool. reg.) 15

debug multi phantoms (style) 288
debug@multi (style) . 275
debug@multi@option (style) 275
debug@multi@register (style) 275
declare tagging keylist (code key) 915
declare tagging keylist,redeclare tagging

keylist (code key) 20

\def . 536, 537
\detokenize 276, 279, 284, 601
\dim_to_decimal_in_bp:n 410, 412, 414, 416
\disable@package@load 6, 7, 40, 41, 366, 367, 788, 789

E
\else . 432
\end . 153
every foster parent (step) 15, 77
every fosterling (step) 15, 77
every parent (keylist) 14, 55
\exp_args:Ne . 504, 523
\exp_args:Nne . 836
\exp_args:NnV . 497, 516
\exp_args:No . 563
\exp_not:N . 504, 523
\exp_not:n . 850, 859
\expandafter 588, 589, 593, 803, 923, 947, 948
\ExpandArgs 276, 279, 284, 601
\expanded . 588, 593
\ExplSyntaxOff . 585, 909
\ExplSyntaxOn 382, 802, 815
ext.ling (lib.) . 3

ext.ling-debug (lib.) . 3

ext.multi (lib.) . 3

ext.multi-debug (lib.) . 3

ext.tagging (lib.) . 3, 3

ext.tagging-debug (lib.) 3, 3

ext.utils (lib.) . 3

ext.utils-debug (lib.) . 3

F
\fi . 434, 551, 569, 602
\foresteoption . 285
\foresteregister 165, 173, 280, 493, 513, 1006
forestext utils debug (style) 912
\forestext@keylist@declare 895, 918
\forestext@keylist@log 901, 919, 933
\forestext@keylist@put 895, 936
\forestext@keylist@redeclare 895, 932
\forestext@keylist@remove 895, 942
\forestext@keylist@remove@key 895, 939
\forestext@prop@to@keylist 895, 921
\forestext@toksa 910, 920, 923, 947, 948
\forestext@toksapp 760, 803, 920
\forestset 20, 54, 314, 387, 447, 483,

504, 510, 523, 529, 540, 604, 911, 948, 949, 970
foster parents (step) 15, 77
fosterlings (step) . 15, 77

G
\global . 480

forest-lib-ext.multi 51 / 52

H
has branches (autowrapped toks reg.) 5, 651
\hook_gput_code:nnn 577, 581

I
\if@inlabel . 430
\if@tagforest@debug 549, 596
\ifmemoizing . 567, 806
\IfPackageLoadedT . 309
\IfSocketPlugExistsTF 616, 629
\inteval . 163, 170
is branch (autowrapped toks reg.) 5, 651
is child (autowrapped toks reg.) 5, 651
is edge label (autowrapped toks reg.) 5, 651
is leaf (autowrapped toks reg.) 5, 651
is root (autowrapped toks reg.) 5, 651

K
keylists registers:

outer labels . 19, 989
keylists:

before collating tags 4, 646
before tagging nodes 4, 646
before tagging tree 4, 646
every parent . 14, 55
other parents . 55
utils@outer@label@opts 988

\keyval_parse:NNn . 838, 875

L
\l__forestext_tmpa_prop . . . 817, 874, 879, 889, 892
\l__forestext_tmpa_seq 818
\l__forestext_tmpa_tl 816, 889, 890
\l__tagforest_tmpa_str 384, 496, 498, 504, 517, 523
\l__tagforest_toks_tl 383, 459, 562
\l_forestext_tagging_custom_bool 385, 487
libraries:

ext.ling . 3

ext.ling-debug . 3

ext.multi . 3

ext.multi-debug . 3

ext.tagging . 3, 3

ext.tagging-debug . 3, 3

ext.utils . 3

ext.utils-debug . 3

\LogTagForestId . 591
\LogTagForestToks . 586

M
\memoizingfalse . 806
\mode_if_vertical:T . 428
\mode_leave_vertical: . 431
multi (style) . 13, 99
multi@add@parent (style) 188
multi@also@parent (style) 125
multi@forked@edge (style) 315
multi@parent (style) . 136
multi@phantom (style) . 260

N
\newcommand . 587, 592, 599
\newcount . 591
\newif . 596, 806
\newtoks . 586, 910
node@ttoks (autowrapped toks) 649
\noexpand . 589
not custom tagging (code key) 7

not debug multi phantoms (bool. reg.) 15

not debug multi phantoms (style) 288

O
other parents (keylist) . 55
outer label (style) . 19, 999
outer labels (keylist register) 19, 989
outer labels at (toks register) 19, 993

P
\PackageError 619, 632, 951
\PackageInfo 310, 311, 351, 352, 500, 519
\PackageWarning . 9,

10, 43, 44, 289, 297, 369, 370, 506, 525, 791, 792
\path . 1017
\pgfkeysvalueof . 1023
\pgfqkeys . 924
\pgfsys@begin@text . 536
\pgfsys@end@text . 537
plugs:

tagsupport/forest/inittag 426
tagsupport/forest/setup alt 445
tagsupport/forest/tag alt 454

pretty nice empty nodes (style) 17, 20
\prop_clear:c . 829
\prop_get:NnN . 889
\prop_log:c . 904
\prop_map_function:cN 854
\prop_new:c . 822
\prop_new:N . 817
\prop_put_from_keyval:ce 836
\prop_put_from_keyval:Nn 908
\prop_remove:cn . 868
\prop_remove:Nn . 892
\prop_set_eq:cN . 879
\prop_set_eq:Nc . 874
\prop_to_keyval:N . 907
\property_record:ee . 559
\property_ref:ee . 400, 403
\ProvidesForestLibrary 3, 4, 37, 38, 363, 364, 785, 786

Q
\q_no_value . 846, 858, 884

R
redeclare tagging keylist (code key) 915
\relax . 480

S
\seq_new:N . 818
\ShowTagging . 550
\socket_assign_plug:nn 437, 438, 439, 533, 566, 568
\socket_get_plug:nN 496, 808

forest-lib-ext.multi 52 / 52

\socket_if_plug_exist:nnTF 497, 516
\socket_new:nn 419, 420, 421, 422
\socket_new_plug:nnn 426, 445, 454
\socket_use:n . 440, 535
\socket_use:nnn . 570, 571
sockets:

tagsupport/forest/init 419
tagsupport/forest/setup 419
tagsupport/forest/tag 419
tagsupport/forest/tag/mmz 419

stages:
tag tree stage . 4

steps:
c foster parent . 15, 77
c fosterling . 15, 77
every foster parent 15, 77
every fosterling . 15, 77
foster parents . 15, 77
fosterlings . 15, 77

\str_if_eq:eeT . 493, 513
\str_if_eq:nnTF . 858
\str_new:N . 384
\str_set_eq:cN . 812
styles:

+also parent . 15, 226
add parent . 275
align middle child 18, 971
align middle children 18, 971
also parent . 15, 226
also parent+ . 15, 226
debug multi phantoms 288
debug@multi . 275
debug@multi@option 275
debug@multi@register 275
forestext utils debug 912
multi . 13, 99
multi@add@parent . 188
multi@also@parent . 125
multi@forked@edge . 315
multi@parent . 136
multi@phantom . 260
not debug multi phantoms 288
outer label . 19, 999
pretty nice empty nodes 17, 20

T
tag nodes (tagging keylist) 4, 644
tag nodes uses (choice key) 5, 695
tag tree stage (stage) . 4

tag tree uses (choice key) 5, 762
\tag_get:n . 468

\tag_if_active:TF . 481
\tag_mc_begin:n . 461
\tag_mc_begin_pop:n . 554
\tag_mc_end: . 552
\tag_mc_end_push: . 436
\tag_resume:n 424, 442, 548
\tag_socket_use:n . 433
\tag_struct_begin:n . 456
\tag_struct_end: . 553
\tag_struct_gput:ene . 467
\tag_suspend:n 423, 441, 547
\tagforest@debug@typeout

. . . 489, 492, 495, 515, 532, 534, 596, 606, 759
\tagforest@end . 576
\tagforest@id 462, 464, 474, 480, 559, 591
\tagforest@init . 575
\tagforest@tag@tree@tag 556, 778
\tagforest@toks 563, 586, 760
tagging (bool. reg.) . 5

tagging keylist put (code key) 21, 935
tagging keylist remove (code key) 21, 935
tagging keylist remove key (code key) 21, 935
tagging keylists:

collate tags . 4, 644
tag nodes . 4, 644

tagsupport/forest/init (socket) 419
tagsupport/forest/inittag (plug) 426
tagsupport/forest/setup (socket) 419
tagsupport/forest/setup alt (plug) 445
tagsupport/forest/tag (socket) 419
tagsupport/forest/tag alt (plug) 454
tagsupport/forest/tag/mmz (socket) 419
\tex_savepos:D . 558, 561
\text_purify:n . 563
\the . 462,

464, 474, 559, 563, 589, 594, 803, 923, 947, 948
\tl_if_eq:NnT . 890
\tl_new:N . 383, 816
\tl_set:Ne . 562
toks registers:

outer labels at 19, 993
\typeout 276, 279, 284, 588, 593, 601, 821, 828, 835,

873, 888, 903, 916, 917, 923, 930, 931, 946, 947

U
\use:c . 389, 473
\useforestlibrary . 380, 381
\usetikzlibrary . 313
utils@has@outer@labels (bool. reg.) 991
utils@outer@label (autowrapped toks) 995
utils@outer@label@opts (keylist) 988

	Contents
	1 Basic usage
	2 Tagging
	2.0.1 Customisation
	2.0.2 Custom plugs
	2.0.3 Complete control
	2.1 Workflow
	2.2 Example

	3 Multiple parents
	3.1 Creating multiple parents
	3.2 Connecting multiple parents

	4 Linguistics extensions
	5 Utilities
	5.1 Alignment
	5.2 Outer labels
	5.3 ‘Tagging’ keylists

	6 Implementation
	ext.ling
	ext.multi
	ext.tagging
	ext.utils
	7 Toks etc.
	8 ‘Tagging keylists’
	9 Styles
	Changes
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U

